All New Electronics Self-Teaching Guide, Third Edition

Harry Kybett and Earl Boysen
All New Electronics
Self-Teaching Guide,
Third Edition
All New Electronics

Harry Kybett and Earl Boysen

Wiley Publishing, Inc.
To my wonderful wife Nancy.
Thanks for wandering through life side by side with me.
Earl Boysen is an engineer who, after 20 years working in the computer chip industry, decided to slow down and move to a quiet town in the state of Washington. Boysen is the co-author of three other books: *Electronics for Dummies* (Indianapolis: Wiley, 2005), *Electronics Projects for Dummies* (Indianapolis: Wiley, 2006), and *Nanotechnology for Dummies* (Indianapolis: Wiley, 2005). He lives with his wife, Nancy, in a house they built together, and finds himself busy as ever writing books and running two technology-focused Web sites. His site, www.BuildingGadgets.com, focuses on electronics circuits and concepts. The other site, www.understandingnano.com, provides clear explanations of nanotechnology topics. Boysen holds a masters degree in Engineering Physics from the University of Virginia.
Credits

Executive Editor
Carol Long

Development Editor
Kevin Shafer

Technical Editor
Rex Miller

Production Editor
Eric Charbonneau

Copy Editor
Mildred Sanchez

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Sossity Smith

Indexer
Johnna VanHoose Dinse
Contents

Acknowledgments xv

Introduction xvii

Chapter 1 DC Review and Pre-Test 1
Current Flow 1
Ohm’s Law 4
Resistors in Series 6
Resistors in Parallel 7
Power 8
Small Currents 11
The Graph of Resistance 12
The Voltage Divider 14
The Current Divider 17
Switches 20
Capacitors in a DC Circuit 22
Summary 29
DC Pre-Test 30

Chapter 2 The Diode 35
Understanding Diodes 36
The Diode Experiment 40
Diode Breakdown 55
The Zener Diode 58
Summary 65
Self-Test 66
Answers to Self-Test 68

Chapter 3 Introduction to the Transistor 71
Understanding Transistors 72
The Transistor Experiment 87
The Junction Field Effect Transistor
Summary
Self-Test
Answers to Self-Test

Chapter 4 The Transistor Switch
Turning the Transistor on
Turning the Transistor off
Why Transistors are Used as Switches
The Three-Transistor Switch
Alternative Base Switching
Switching The Jfet
The Jfet Experiment
Summary
Self-Test
Answers to Self-Test

Chapter 5 AC Pre-Test and Review
The Generator
Resistors in AC Circuits
Capacitors in AC Circuits
The Inductor in an AC Circuit
Resonance
Summary
Self-Test
Answers to Self-Test

Chapter 6 AC in Electronics
Capacitors in AC Circuits
Capacitors and Resistors in Series
The High Pass Filter Experiment
Phase Shift of an RC Circuit
Resistor and Capacitor in Parallel
Inductors in AC Circuits
Phase Shift for an RL Circuit
Summary
Self-Test
Answers to Self-Test

Chapter 7 Resonant Circuits
The Capacitor and Inductor in Series
The Output Curve
Introduction to Oscillators
Summary
Self-Test
Answers to Self-Test

Chapter 8 Transistor Amplifiers
Working with Transistor Amplifiers
Contents

The Transistor Amplifier Experiment 251
A Stable Amplifier 252
Biasing 256
The Emitter Follower 265
Analyzing an Amplifier 271
The JFET as an Amplifier 275
The Operational Amplifier 284
Summary 288
Self-Test 288
  Answers to Self-Test 290

Chapter 9 Oscillators 293
Understanding Oscillators 293
Feedback 304
The Colpitts Oscillator 308
  Optional Experiment 314
The Hartley Oscillator 314
The Armstrong Oscillator 316
Practical Oscillator Design 316
  Simple Oscillator Design Procedure 318
  Optional Experiment 320
Oscillator Troubleshooting Checklist 320
Summary and Applications 325
Self-Test 326
  Answers to Self-Test 326

Chapter 10 The Transformer 329
Transformer Basics 329
Transformers in Communications Circuits 338
Summary and Applications 343
Self-Test 343
  Answers to Self-Test 345

Chapter 11 Power Supply Circuits 347
Diodes in AC Circuits Produce Pulsating DC 348
Level DC (Smoothing Pulsating DC) 358
Summary 373
Self-Test 374
  Answers to Self-Test 375

Chapter 12 Conclusion and Final Self-Test 377
Conclusion 377
Final Self-Test 378
  Answers to Final Self-Test 387

Appendix A Glossary 393
Appendix B List of Symbols and Abbreviations 397
Appendix C Powers of Ten and Engineering Prefixes 401
Contents

Appendix D Standard Composition Resistor Values 403
Appendix E Supplemental Resources 405
Appendix F Equation Reference 409
Appendix G Schematic Symbols Used in This Book 413
Index 417
I want to first thank Harry Kybett for authoring the original version of this book many years ago. It was an honor to update such a classic book in the electronics field. Thanks also to Carol Long for bringing me on board with the project, and Kevin Shafer for his able project management of the book. My appreciation to Rex Miller for his excellent technical editing, and to Mildred Sanchez for handling all the mechanics of spelling and grammar in a thorough copy edit. Thanks to the people at Wiley, specifically Liz Britten for coordinating the creation of all the diagrams required and Eric Charbonneau for keeping the whole thing on schedule. Finally, thanks to my wife, Nancy Muir, for her advice and support throughout the writing of this book.
Introduction

The rapid growth of modern electronics is truly a phenomenon. All of the things you see in the marketplace today that utilize electronics either did not exist before 1960, or were crude by today’s standards. Some of the many examples of modern electronics in the home include the small (but powerful) pocket calculator, the personal computer, the portable MP3 player, the DVD player, and digital cameras. Many industries have been founded, and older industries have been revamped, because of the availability and application of modern electronics in manufacturing processes, as well as in electronics products themselves.

Modern electronics is based on the transistor and its offspring — the integrated circuit (IC) and the microprocessor. These have short-circuited much of traditional electronic theory, revolutionized its practice, and set the whole field off on several new paths of discovery. This book is a first step to help you begin your journey down those paths.

What This Book Teaches

The traditional way of teaching electronics is often confusing. Too many students are left feeling that the real core of electronics is mysterious and arcane, akin to black magic. This just is not so. In fact, while many areas of our lives have become almost unbelievably complex, the study and practice of electronics in industry and as a hobby has surprisingly been made much simpler. All New Electronics Self-Teaching Guide, Third Edition, takes advantage of this simplicity and covers only those areas you actually need in modern electronics.
This book is for anyone who has a basic understanding of electronics concepts, but who wants to understand the operation of components found in the most common discrete circuits. The chapters in this book focus on circuits that are the building blocks for many common electronics devices, and on the very few important principles you need in working with electronics.

The arrangement and approach of this book is completely different from any other book on electronics in that it uses a “question-and-answer” approach to lead you into simple, but pertinent, experiments. This book steps you through calculations for every example in an easy-to-understand fashion, and you do not need to have a mathematical background beyond first-year algebra to follow along. In addition, this book omits the usual chapters on semiconductor physics, because you don’t need these in the early stages of working with electronics.

Electronics is a very easy technology, which anyone can understand with very little effort. This book focuses on how to apply the few basic principles that are the basis of modern electronic practice. Understanding the circuits composed of discrete components and the applicable calculations discussed in this book is useful not only in building and designing circuits, but it also helps you to work with ICs. That’s because ICs use miniaturized components such as transistors, diodes, capacitors, and resistors that function based on the same rules as discrete components (along with some specific rules necessitated by the extremely small size of IC components).

How This Book Is Organized

This book is organized with sets of problems that challenge you to think through a concept or procedure, and then provides answers so you can constantly check your progress and understanding. Specifically, the chapters in this book are organized as follows:

- **Chapter 1: DC Review and Pre-Test** — This chapter provides a review and pre-test on the basic concepts, components, and calculations that are useful when working with direct current (DC) circuits.

- **Chapter 2: The Diode** — Here you learn about the diode, including how you use diodes in DC circuits, the main characteristics of diodes, and calculations you can use to determine current, voltage, and power.

- **Chapter 3: Introduction to the Transistor** — In this chapter, you learn about the transistor and its use in circuits. You also discover how bipolar junction transistors (BJTs) and junction field effect transistors (JFETs) control the flow of electric current.
Chapter 4: The Transistor Switch — This chapter examines the most simple and widespread application of a transistor: switching. In addition to learning how to design a transistor circuit to drive a particular load, you also compare the switching action of a JFET and a BJT.

Chapter 5: AC Pre-Test and Review — This chapter examines the basic concepts and equations for alternating current (AC) circuits. You discover how to use resistors and capacitors in AC circuits, and learn related calculations.

Chapter 6: AC in Electronics — This chapter looks at how resistors, capacitors, and inductors are used in high pass filters and low pass filters to pass or block AC signals above or below a certain frequency.

Chapter 7: Resonant Circuits — This chapter examines the use of capacitors, inductors, and resistors in circuits called bandpass filters and band-reject filters, which pass or block AC signals in a band of frequencies centered around the resonant frequency of the circuit. You also learn how to calculate the resonance frequency and bandwidth of these circuits. This chapter also introduces you to how to use resonant circuits in oscillators.

Chapter 8: Transistor Amplifiers — Here you explore the use of transistor amplifiers to amplify electrical signals. In addition to examining the fundamental steps used to design BJT-based amplifiers, you learn how to use JFETs and operational amplifiers (op-amps) in amplifier circuits.

Chapter 9: Oscillators — This chapter introduces you to the oscillator, a circuit that produces a continuous AC output signal. You learn how an oscillator works, and step through the procedure to design and build an oscillator.

Chapter 10: The Transformer — In this chapter, you discover how AC voltage is converted by a transformer to a higher or lower voltage. You learn how a transformer makes this conversion, and how to calculate the output voltage that results.

Chapter 11: Power Supply Circuits — In this chapter, you find out how power supplies convert AC to DC with a circuit made up of transformers, diodes, capacitors, and resistors. You also learn how to calculate the values of components that produce a specified DC output voltage for a power supply circuit.

Chapter 12: Conclusion and Final Self-Test — This chapter enables you to check your understanding of the topics presented in this book through the use of a final self-test that allows you to assess your overall knowledge of electronics.
In addition, this book contains the following appendixes for easy reference:

- **Appendix A: Glossary** — This glossary provides key electronics terms and their definitions.
- **Appendix B: List of Symbols and Abbreviations** — This appendix provides a handy reference of commonly used symbols and abbreviations.
- **Appendix C: Powers of Ten and Engineering Prefixes** — This guide lists prefixes that are commonly used in electronics, along with their corresponding values.
- **Appendix D: Standard Composition Resistor Values** — This appendix provides standard resistance values for the carbon composition resistor, the most commonly used type of resistor.
- **Appendix E: Supplemental Resources** — This appendix provides references to helpful Web sites, books, and magazines.
- **Appendix F: Equation Reference** — This is a quick guide to commonly used equations, along with chapter and problem references showing you where they are first introduced in this book.
- **Appendix G: Schematic Symbols Used in This Book** — This appendix provides a quick guide to schematic symbols used in the problems found throughout the book.

### Conventions Used In This Book

As you study electronics you will find that there is some variation in terminology and the way that circuits are drawn. Here are two conventions followed in this book that you should be aware of:

- The discussions in this book use V to stand for voltage, versus E, which you will see used in some other books.
- In all circuit diagrams in this book, intersecting lines indicate an electrical connection. (Some other books use a dot at the intersection of lines to indicate a connection.) If a semicircle appears at the intersection of two lines, it indicates that there is no connection. See Figure 9.5 for an example of this.

### How to Use This Book

This book assumes that you have some knowledge of basic electronics such as Ohm’s law and current flow. If you have read a textbook or taken a course
on electronics, or if you have worked with electronics, you probably have the prerequisite knowledge. If not, you should read a book such as *Electronics for Dummies* (Indianapolis: Wiley, 2005) to get the necessary background for this book. You can also go to the author’s Web site, [www.BuildingGadgets.com](http://www.BuildingGadgets.com), and use the Tutorial links to find useful online lessons in electronics. In addition, Chapters 1 and 5 allow you to test your knowledge and review the necessary basics of electronics.

Note that you should read the chapters in order, because often later material depends on concepts and skills covered in earlier chapters.

*All New Electronics Self-Teaching Guide, Third Edition,* is presented in a self-teaching format that allows you to learn easily and at your own pace. The material is presented in numbered sections called *problems.* Each problem presents some new information and gives you a question to answer, or an experiment to try. To learn most effectively, you should cover up the answers with a sheet of paper and try to answer each question on your own. Then, compare your answer with the correct answer that follows. If you miss a question, correct your answer and then go on. If you miss many in a row, go back and review the previous section, or you may miss the point of the material that follows.

Be sure to try to do all of the experiments. They are very easy and help reinforce your learning of the subject matter. If you don’t have the equipment to do an experiment, simply reading through it will help you to better understand the concepts it demonstrates.

When you reach the end of a chapter, evaluate your learning by taking the Self-Test. If you miss any questions, review the related parts of the chapter again. If you do well on the Self-Test, you’re ready to go on to the next chapter. You may also find the Self-Test useful as a review before you start the next chapter. At the end of the book, there is a Final Self-Test that allows you to assess your overall learning.

Go through this book at your own pace. You can work through this book alone, or you can use it in conjunction with a course. If you use the book alone, it serves as an introduction to electronics, but is not a complete course. For that reason, at the end of the book are some suggestions for further reading and online resources. Also, at the back of the book is a table of symbols and abbreviations, which are useful for reference and review.

Now you’re ready to learn *electronics!*
CHAPTER 1

DC Review and Pre-Test

Electronics cannot be studied without first understanding the basics of electricity. This chapter is a review and pre-test on those aspects of direct current (DC) that apply to electronics. By no means does it cover the whole DC theory, but merely those topics that are essential to simple electronics. This chapter will review the following:

- Current flow
- Potential or voltage difference
- Ohm’s law
- Resistors in series and parallel
- Power
- Small currents
- Resistance graphs
- Kirchhoff’s voltage and current laws
- Voltage and current dividers
- Switches
- Capacitor charging and discharging
- Capacitors in series and parallel

**Current Flow**

1. Electrical and electronic devices work because of an electric current.
Question

What is an electric current?

Answer

An electric current is a flow of electric charge. The electric charge usually consists of negatively charged electrons. However, in semiconductors, there are also positive charge carriers called holes.

There are several methods that can be used to generate an electric current.

Question

Write at least three ways an electron flow (or current) can be generated.

Answers

The following is a list of the most common ways to generate current:

- **Magnetically** — The induction of electrons in a wire rotating within a magnetic field. An example of this would be generators turned by water, wind, or steam, or the fan belt in a car.

- **Chemically** — Involving electrochemical generation of electrons by reactions between chemicals and electrodes (as in batteries).

- **Photovoltaic generation of electrons** — When light strikes semiconductor crystals (as in solar cells).

Less common methods to generate an electric current include the following:

- **Thermal generation** — Using temperature differences between thermocouple junctions. Thermal generation is used in generators on spacecraft that are fueled by radioactive material.

- **Electrochemical reaction** — Occurring between hydrogen, oxygen, and electrodes (fuel cells).
Piezoelectrical — Involving mechanical deformation of piezoelectric substances. For example, piezoelectric material in the heels of shoes power LEDs that light up when you walk.

Most of the simple examples in this book will contain a battery as the voltage source. As such, the source provides a potential difference to a circuit that will enable a current to flow. An electric current is a flow of electric charge. In the case of a battery, electrons are the electric charge, and they flow from the terminal that has an excess number of electrons to the terminal that has a deficiency of electrons. This flow takes place in any complete circuit that is connected to battery terminals. It is this difference of charge that creates the potential difference in the battery. The electrons are trying to balance the difference.

Because electrons have a negative charge, they actually flow from the negative terminal and return to the positive terminal. We call this direction of flow electron flow. Most books, however, use current flow, which is in the opposite direction. It is referred to as conventional current flow or simply current flow. In this book, the term conventional current flow is used in all circuits.

Later in this book, you will see that many semiconductor devices have a symbol that contains an arrowhead pointing in the direction of conventional current flow.

Questions

A. Draw arrows to show the current flow in Figure 1-1. The symbol for the battery shows its polarity.

B. What indicates that a potential difference is present?

C. What does the potential difference cause?

D. What will happen if the battery is reversed?
4 Chapter 1  DC Review and Pre-Test

Answers

A. See Figure 1-2.

B. The battery symbol indicates that a difference of potential, also called voltage, is being supplied to the circuit.

C. Voltage causes current to flow if there is a complete circuit present, as shown in Figure 1-1.

D. The current will flow in the opposite direction.

Ohm’s Law

Ohm’s law states the fundamental relationship between voltage, current, and resistance.

Question

What is the algebraic formula for Ohm’s law?

Answer

\[ V = I \times R \]

This is the most basic equation in electricity, and you should know it well. Note that some electronics books state Ohm’s law as \( E = IR \). \( E \) and \( V \) are both symbols for voltage. This book uses \( V \) throughout. Also, in this formula, resistance is the opposition to current flow. Note that larger resistance results in smaller current for any given voltage.

Use Ohm’s law to find the answers in this problem.

Questions

What is the voltage for each combination of resistance and current values?
Ohm’s Law

A. \( R = 20 \text{ ohms} \quad I = 0.5 \text{ amperes} \quad V = \quad \)
B. \( R = 560 \text{ ohms} \quad I = 0.02 \text{ amperes} \quad V = \quad \)
C. \( R = 1000 \text{ ohms} \quad I = 0.01 \text{ amperes} \quad V = \quad \)
D. \( R = 20 \text{ ohms} \quad I = 1.5 \text{ amperes} \quad V = \quad \)

**Answers**

A. 10 volts  
B. 11.2 volts  
C. 10 volts  
D. 30 volts

6. You can rearrange Ohm’s law to calculate current values.

**Questions**

What is the current for each combination of voltage and resistance values?

A. \( V = 1 \text{ volt} \quad R = 2 \text{ ohms} \quad I = \quad \)
B. \( V = 2 \text{ volts} \quad R = 10 \text{ ohms} \quad I = \quad \)
C. \( V = 10 \text{ volts} \quad R = 3 \text{ ohms} \quad I = \quad \)
D. \( V = 120 \text{ volts} \quad R = 100 \text{ ohms} \quad I = \quad \)

**Answers**

A. 0.5 amperes  
B. 0.2 amperes  
C. 3.3 amperes  
D. 1.2 amperes

7. You can rearrange Ohm’s law to calculate resistance values.

**Questions**

What is the resistance for each combination of voltage and current values?

A. \( V = 1 \text{ volt} \quad I = 1 \text{ ampere} \quad R = \quad \)
B. \( V = 2 \text{ volts} \quad I = 0.5 \text{ ampere} \quad R = \quad \)
C. \( V = 10 \text{ volts} \quad I = 3 \text{ ampere} \quad R = \quad \)
D. \( V = 50 \text{ volts} \quad I = 20 \text{ amperes} \quad R = \quad \)
Answers
A. 1 ohm
B. 4 ohms
C. 3.3 ohms
D. 2.5 ohms

Work through these examples. In each case, two factors are given and you must find the third.

Questions
What are the missing values?
A. 12 volts and 10 ohms. Find the current.

B. 24 volts and 8 amperes. Find the resistance.

C. 5 amperes and 75 ohms. Find the voltage.

Answers
A. 1.2 amperes
B. 3 ohms
C. 375 volts

Resistors in Series
Resistors can be connected in series. Figure 1-3 shows two resistors in series.

\[ \begin{array}{c}
\text{R}_1 \\
10 \Omega \\
\text{R}_2 \\
5 \Omega
\end{array} \]

Figure 1-3
**Question**
What is their total resistance?

**Answer**
\[ R_T = R_1 + R_2 = 10 \text{ ohms} + 5 \text{ ohms} = 15 \text{ ohms} \]
The total resistance is often called the *equivalent series resistance*, and is denoted as \( R_{\text{eq}} \).

---

**Resistors in Parallel**

10 Resistors can be connected in parallel, as shown in Figure 1-4.

![Figure 1-4](image)

**Question**
What is the total resistance here?

**Answer**
\[ \frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{2} + \frac{1}{2} = 1; \text{ thus } R_T = 1 \text{ ohm} \]

\( R_T \) is often called the *equivalent parallel resistance*.

11 The simple formula from problem 10 can be extended to include as many resistors as desired.

**Question**
What is the formula for three resistors in parallel?
Chapter 1: DC Review and Pre-Test

Answer

\[
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
\]

You will often see this formula in the following form:

\[
R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}
\]

12. In the following exercises, two resistors are connected in parallel.

Questions

What is the total or equivalent resistance?

A. \( R_1 = 1 \) ohm \( R_2 = 1 \) ohm \( R_T = \) ___________
B. \( R_1 = 1000 \) ohms \( R_2 = 500 \) ohms \( R_T = \) ___________
C. \( R_1 = 3600 \) ohms \( R_2 = 1800 \) ohms \( R_T = \) ___________

Answers

A. 0.5 ohms
B. 333 ohms
C. 1200 ohms

Note that \( R_T \) is always smaller than the smallest of the resistors in parallel.

Power

13. When current flows through a resistor, it dissipates power, usually in the form of heat. Power is expressed in terms of watts.

Question

What is the formula for power?
There are three formulas for calculating power:

\[ P = VI \text{ or } P = I^2R \text{ or } P = \frac{V^2}{R} \]

The first formula shown in problem 13 allows power to be calculated when only the voltage and current are known.

**Questions**

What is the power dissipated by a resistor for the following voltage and current values?

- **A.** \( V = 10 \text{ volts} \) \( I = 3 \text{ amperes} \) \( P = \) 
- **B.** \( V = 100 \text{ volts} \) \( I = 5 \text{ amperes} \) \( P = \) 
- **C.** \( V = 120 \text{ volts} \) \( I = 10 \text{ amperes} \) \( P = \)

**Answers**

- **A.** 30 watts
- **B.** 500 watts, or 0.5 kilowatts
- **C.** 1200 watts, or 1.2 kilowatts

The second formula shown in problem 13 allows power to be calculated when only the current and resistance are known.

**Questions**

What is the power dissipated by a resistor given the following resistance and current values?

- **A.** \( R = 20 \text{ ohm} \) \( I = 0.5 \text{ ampere} \) \( P = \) 
- **B.** \( R = 560 \text{ ohms} \) \( I = 0.02 \text{ ampere} \) \( P = \) 
- **C.** \( V = 1 \text{ volt} \) \( R = 2 \text{ ohms} \) \( P = \) 
- **D.** \( V = 2 \text{ volt} \) \( R = 10 \text{ ohms} \) \( P = \)
Resistors used in electronics generally are manufactured in standard values with regard to resistance and power rating. Appendix D shows a table of standard resistance values. Quite often, when a certain resistance value is needed in a circuit, you must choose the closest standard value. This is the case in several examples in this book.

You must also choose a resistor with the power rating in mind. You should never place a resistor in a circuit that would require that resistor to dissipate more power than its rating specifies.

Questions

If standard power ratings for carbon composition resistors are 1/4, 1/2, 1, and 2 watts, what power ratings should be selected for the resistors that were used for the calculations in problem 15?

A. For 5 watts
B. For 0.224 watts
C. For 0.5 watts
D. For 0.4 watts

Answers

A. 5 watt (or greater)
B. 1/4 watt (or greater)
C. 1/2 watt (or greater)
D. 1/2 watt (or greater)

Most electronics circuits use low power carbon composition resistors. For higher power levels (such as the 5 watt requirement in question A), other types of resistors are available.
Small Currents

17 Although currents much larger than 1 ampere are used in heavy industrial equipment, in most electronic circuits, only fractions of an ampere are required.

**Questions**

A. What is the meaning of the term *milliampere*?

B. What does the term *microampere* mean?

**Answers**

A. A milliampere is one-thousandth of an ampere (that is, $1/1000$ or 0.001 amperes). It is abbreviated mA.

B. A microampere is one-millionth of an ampere (that is, $1/1,000,000$ or 0.000001 amperes). It is abbreviated µA.

18 In electronics, the values of resistance normally encountered are quite high. Often, thousands of ohms and occasionally even millions of ohms are used.

**Questions**

A. What does kΩ mean when it refers to a resistor?

B. What does MΩ mean when it refers to a resistor?

**Answers**

A. Kilohm ($k = $kilo, $Ω = $ohm). The resistance value is thousands of ohms. Thus, $1\, kΩ = 1,000$ ohms, $2\, kΩ = 2,000$ ohms, and $5.6\, kΩ = 5,600$ ohms.
19. The following exercise is typical of many performed in transistor circuits. In this example, 6 V is applied across a resistor and 5 mA of current is required to flow through the resistor.

**Question**

What value of resistance must be used and what power will it dissipate?

\[ R = \frac{V}{I} = \frac{6 \text{ V}}{5 \text{ mA}} = \frac{6}{0.005} = 1200 \text{ ohms} = 1.2 \text{ k}\Omega \]

\[ P = V \times I = 6 \times 0.005 = 0.030 \text{ watts} = 30 \text{ mW} \]

20. Now, try these two simple examples.

**Questions**

What is the missing value?

A. 50 volts and 10 mA. Find the resistance.

B. 1 volt and 1 M\Omega. Find the current.

**Answers**

A. 5 k\Omega

B. 1 \mu A

21. The voltage drop across a resistor and the current flowing through it can be plotted on a simple graph. This graph is called a *V-I curve*.

Consider a simple circuit in which a battery is connected across a 1 k\Omega resistor.
Questions

A. Find the current flowing if a 10 V battery is used.

B. Find the current when a 1 V battery is used.

C. Now find the current when a 20 V battery is used.

Answers

A. 10 mA
B. 1 mA
C. 20 mA

Plot the points of battery voltage and current flow from problem 21 on the graph shown in Figure 1-5, and connect them together.

Figure 1-5

Answer

You should have drawn a straight line, as in the graph shown in Figure 1-6.

Sometimes you need to calculate the slope of the line on a graph. To do this, pick two points and call them A and B.

For point A let \( V = 5 \) volts and \( I = 5 \) mA
For point B let \( V = 20 \) volts and \( I = 20 \) mA
The slope can be calculated with the following formula:

\[
\text{Slope} = \frac{V_B - V_A}{I_B - I_A} = \frac{20 \text{ volts} - 5 \text{ volts}}{20 \text{ mA} - 5 \text{ mA}} = \frac{15 \text{ volts}}{15 \text{ mA}} = \frac{15 \text{ volts}}{0.015 \text{ A}} = 1 \text{k}\Omega
\]

In other words, the slope of the line is equal to the resistance.

Later, you will learn about V-I curves for other components. They have several uses, and often they are not straight lines.

---

**The Voltage Divider**

The circuit shown in Figure 1-7 is called a **voltage divider**. It is the basis for many important theoretical and practical ideas you encounter throughout the entire field of electronics.

The object of this circuit is to create an output voltage \( V_0 \) that you can control based upon the two resistors and the input voltage. Note that \( V_0 \) is also the voltage drop across \( R_2 \).
Question
What is the formula for $V_0$?

Answer

$V_0 = V_S \times \frac{R_2}{R_1 + R_2}$

Note that $R_1 + R_2 = R_T$, the total resistance of the circuit.

A simple example will demonstrate the use of this formula.

Question

For the circuit shown in Figure 1-8, what is $V_0$?

Answer

$V_O = V_S \times \frac{R_2}{R_1 + R_2}$

$= 10 \times \frac{6}{4 + 6}$

$= 10 \times \frac{6}{10}$

$= 6$ volts

Now, try these problems.
Chapter 1 = DC Review and Pre-Test

Questions

What is the output voltage for each combination of supply voltage and resistance?

A. \( V_S = 1 \text{ volt} \quad R_1 = 1 \text{ ohm} \quad R_2 = 1 \text{ ohm} \quad V_0 = \) 
B. \( V_S = 6 \text{ volts} \quad R_1 = 4 \text{ ohms} \quad R_2 = 2 \text{ ohms} \quad V_0 = \) 
C. \( V_S = 10 \text{ volts} \quad R_1 = 3.3 \text{ k}\Omega \quad R_2 = 5.6 \text{ k}\Omega \quad V_0 = \) 
D. \( V_S = 28 \text{ volts} \quad R_1 = 22 \text{ k}\Omega \quad R_2 = 6.2 \text{ k}\Omega \quad V_0 = \)

Answers

A. 0.5 volts
B. 2 volts
C. 6.3 volts
D. 6.16 volts

26. The output voltage from the voltage divider is always less than the applied voltage. Voltage dividers are often used to apply specific voltages to different components in a circuit. Use the voltage divider equation to answer the following questions.

Questions

A. What is the voltage drop across the 22k resistor for question D of problem 25?

B. What total voltage do you get if you add this voltage drop to the voltage drop across the 6.2k resistor?

Answers

A. 21.84 volts
B. The sum is 28 volts.

Note that the voltages across the two resistors add up to the supply voltage. This is an example of Kirchhoff’s voltage law (KVL), which simply means that the voltage supplied to a circuit must equal the sum of the
voltage drops in the circuit. In this book, KVL will often be used without actual reference to the law.

Also notice that voltage drop across a resistor is proportional to the resistor's value. Therefore, if one resistor has a greater value than another in a series circuit, the voltage drop across the higher value resistor will be greater.

The Current Divider

In the circuit shown in Figure 1-9, the current splits or divides between the two resistors that are connected in parallel.

\[
\begin{align*}
V_S & \quad \text{+} \quad R \quad \text{=} \quad \text{I}_1 \quad \text{R}_1 \\
V_S & \quad \text{I}_T \quad \text{I}_1 \quad \text{I}_2 \\
& \quad \text{R}_1 \quad \text{R}_2 \\
& \quad \text{I}_T \quad \text{I}_T
\end{align*}
\]

Figure 1-9

\(I_T\) splits into the individual currents \(I_1\) and \(I_2\), and then these recombine to form \(I_T\).

**Question**

Which of the following relationships are valid for this circuit?

A. \(V_S = R_1I_1\)

B. \(V_S = R_2I_2\)

C. \(R_1I_1 = R_2I_2\)

D. \(I_1/I_2 = R_2/R_1\)

**Answer**

All of them are valid.
When solving current divider problems, follow these steps:

1. Set up the ratio of the resistors and currents.
   \[ \frac{I_1}{I_2} = \frac{R_2}{R_1} \]

2. Rearrange the ratio to give \( I_2 \) in terms of \( I_1 \):
   \[ I_2 = I_1 \times \frac{R_1}{R_2} \]

3. From the fact that \( I_T = I_1 + I_2 \), express \( I_T \) in terms of \( I_1 \) only.
4. Now, find \( I_1 \).
5. Now, find the remaining current (\( I_2 \)).

**Question**

The values of two resistors in parallel and the total current flowing through the circuit are shown in Figure 1-10. What is the current through each individual resistor?

![Figure 1-10](image)

**Answers**

Working through the steps as shown:

1. \( \frac{I_1}{I_2} = \frac{R_2}{R_1} = 1/2 \)
2. \( I_2 = 2I_1 \)
3. \( I_T = I_1 + I_2 = I_1 + 2I_1 = 3I_1 \)
4. \( I_1 = I_T/3 = 2/3 \text{ A} \)
5. \( I_2 = 2I_1 = 4/3 \text{ A} \)
29 Now, try these problems. In each case, the total current and the two resistors are given. Find $I_1$ and $I_2$.

**Questions**

A. $I_T = 30 \text{ mA}, R_1 = 12 \Omega, R_2 = 6 \Omega$

B. $I_T = 133 \text{ mA}, R_1 = 1 \Omega, R_2 = 3 \Omega$

C. What current do you get if you add $I_1$ and $I_2$?

**Answers**

A. $I_1 = 10 \text{ mA}, I_2 = 20 \text{ mA}$

B. $I_1 = 100 \text{ mA}, I_2 = 33 \text{ mA}$

C. They add back together to give you the total current supplied to the parallel circuit.

Note that question C is actually a demonstration of Kirchhoff’s current law (KCL). This law simply stated says that the total current entering a junction in a circuit must equal the sum of the currents leaving that junction. This law will also be used on numerous occasions in later chapters. KVL and KCL together form the basis for many techniques and methods of analysis that are used in the application of circuit analysis.

Also, notice that the current through a resistor is inversely proportional to the resistor’s value. Therefore, if one resistor is larger than another in a parallel circuit, the current flowing through the higher value resistor will be the smaller of the two. Check your results for this problem to verify this.

30 You can also use the following equation to calculate the current flowing through a resistor in a two-branch parallel circuit:

$$I_1 = \frac{(I_T)(R_2)}{(R_1 + R_2)}$$

**Question**

Write the equation for the current $I_2$. 
Check the answers for the previous problem using these equations.

**Answer**

\[ I_2 = \frac{(I_1)(R_1)}{(R_1 + R_2)} \]

Note that the current through one branch of a two-branch circuit is equal to the total current times the resistance of the opposite branch, divided by the sum of the resistances of both branches. This is an easy formula to remember.

**Switches**

A mechanical switch is a device that completes or breaks a circuit. The most familiar use is that of applying power to turn a device on or off. A switch can also permit a signal to pass from one place to another, prevent its passage, or route a signal to one of several places.

In this book we deal with two types of switches. The first is the simple on-off switch, also called a single pole single throw switch. The second is the single pole double throw switch. The circuit symbols for each are shown in Figure 1-11.

Two important facts about switches must be known.

- A closed (or ON) switch has the total circuit current flowing through it. There is no voltage drop across its terminals.
- An open (or OFF) switch has no current flowing through it. The full circuit voltage appears between its terminals.

The circuit shown in Figure 1-12 includes a closed switch.
Questions

A. What is the current flowing through the switch?

B. What is the voltage at point A and point B with respect to ground?

C. What is the voltage drop across the switch?

Answers

A. \( \frac{10 \text{ V}}{10 \text{ ohms}} = 1 \text{ ampere} \)

B. \( V_A = V_B = 10 \text{ V} \)

C. 0 V (There is no voltage drop because both terminals are at the same voltage.)

The circuit shown in Figure 1-13 includes an open switch.

![Figure 1-13](image)

Questions

A. What is the voltage at point A and point B?

B. How much current is flowing through the switch?

C. What is the voltage drop across the switch?

Answers

A. \( V_A = 10 \text{ V}; V_B = 0 \text{ V} \)
Chapter 1: DC Review and Pre-Test

B. No current is flowing because the switch is open.
C. 10 V. If the switch is open, point A is the same voltage as the positive battery terminal and point B is the same voltage as the negative battery terminal.

The circuit shown in Figure 1-14 includes a single pole double throw switch. The position of the switch determines whether lamp A or lamp B is lit.

Figure 1-14

Questions

A. In the position shown, which lamp is lit?

B. Can both lamps be lit simultaneously?

Answers

A. Lamp A.
B. No, one or the other must be off.

Capacitors in a DC Circuit

Capacitors are used extensively in electronics. They are used in both alternating current (AC) and DC circuits. Their main use in DC electronics is to become charged, hold the charge, and, at a specific time, release the charge.
The capacitor shown in Figure 1-15 charges when the switch is closed.

![Capacitor Circuit Diagram](image)

**Figure 1-15**

**Question**

To what final voltage will the capacitor charge?

**Answer**

It will charge up to 10 V. It will charge up to the voltage that would appear across an open circuit located at the same place where the capacitor is located.

**Questions**

A. What is the formula for the time constant of this type of circuit?

B. What is the time constant for the circuit shown in Figure 1-15?

C. How long does it take the capacitor to reach 10 V?

D. To what voltage level does it charge in one time constant?

**Answers**

A. \( \tau = R \times C \)
### DC Review and Pre-Test

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>$\tau = 10 \text{k} \Omega \times 10 \mu\text{F} = 10,000 \Omega \times 0.00001 \text{F} = 0.1 \text{seconds}$. (Convert resistance values to ohms and capacitance values to farads for this calculation.)</td>
</tr>
<tr>
<td>C.</td>
<td>Approximately 5 time constants, or about 0.5 seconds.</td>
</tr>
<tr>
<td>D.</td>
<td>63 percent of the final voltage, or about 6.3 V.</td>
</tr>
</tbody>
</table>

36. The capacitor will not begin charging until the switch is closed. When a capacitor is uncharged or discharged, it has the same voltage on both plates.

**Questions**

A. What will be the voltage on plate A and plate B of the capacitor in Figure 1-15 before the switch is closed?

B. When the switch is closed, what will happen to the voltage on plate A?

C. What will happen to the voltage on plate B?

D. What will be the voltage on plate A after one time constant?

**Answers**

A. Both will be at 0 V if the capacitor is totally discharged.

B. It will rise towards 10 V.

C. It will stay at 0 V.

D. About 6.3 V.

37. The *capacitor charging graph* in Figure 1-16 shows for how many time constants a voltage must be applied to a capacitor before it reaches a given percentage of the applied voltage.

**Questions**

A. What is this type of curve called?
B. What is it used for?

![Figure 1-16]

**Answers**

A. It is called an exponential curve.

B. It is used to calculate how far a capacitor has charged in a given time.

38. In the following, examples a resistor and a capacitor are in series. Calculate the time constant, how long it takes the capacitor to fully charge, and the voltage level after one time constant if a 10 V battery is used.

**Questions**

A. \( R = 1 \, \text{k}\Omega \quad C = 1000 \, \mu\text{F} \)

B. \( R = 330 \, \text{k}\Omega \quad C = 0.05 \, \mu\text{F} \)

**Answers**

A. \( \tau = 1 \text{ second; charge time = 5 seconds; } V_C = 6.3 \text{ V} \)

B. \( \tau = 16.5 \text{ ms; charge time = 82.5 ms; } V_C = 6.3 \text{ V} \) (The abbreviation ms indicates milliseconds.)
39 The circuit shown in Figure 1-17 uses a double pole switch to create a discharge path for the capacitor.

![Circuit Diagram](image)

**Figure 1-17**

**Questions**

A. With the switch in position X, what is the voltage on each plate of the capacitor?

B. When the switch is moved to position Y, the capacitor begins to charge. What is its charging time constant?

C. How long does it take to fully charge the capacitor?

**Answers**

A. 0 V

B. \[ \tau = R \times C = (100 \text{ k}\Omega) \times (100 \mu\text{F}) = 10 \text{ secs} \]

C. Approximately 50 seconds

40 Suppose that the switch shown in Figure 1-17 is moved back to position X once the capacitor is fully charged.

**Questions**

A. What is the discharge time constant of the capacitor?

B. How long does it take to fully discharge the capacitor?
Answers

A. \[ \tau = R \times C = (50 \text{ k}\Omega) (100 \mu\text{F}) = 5 \text{ seconds} \] (discharging through the 50 kΩ resistor)

B. Approximately 25 seconds

The circuit powering a camera flash is an example of a capacitor’s ability to store charge and then discharge upon demand. While you wait for the flash unit to charge, the camera is using its battery to charge a capacitor. Once the capacitor is charged, it holds that charge until you click the shutter button, causing the capacitor to discharge, which powers the flash.

Capacitors can be connected in parallel, as shown in Figure 1-18.

41 Capacitors can be connected in parallel, as shown in Figure 1-18.

\[ C_1 \parallel C_2 \parallel C_3 \parallel \cdots \parallel C_N \]

\[ C_T = C_1 + C_2 + C_3 + \cdots + C_N \]

A. What is the formula for the total capacitance?

B. What is the total capacitance in circuit 1?

C. What is the total capacitance in circuit 2?

Answers

A. \[ C_T = C_1 + C_2 + C_3 + \cdots + C_N \]

B. \[ C_T = 1 + 2 = 3 \mu\text{F} \]

C. \[ C_T = 1 + 2 + 3 = 6 \mu\text{F} \]

In other words, the total capacitance is found by simple addition of the capacitor values.
Capacitors can be placed in series, as shown in Figure 1-19.

![Figure 1-19](image)

Questions
A. What is the formula for the total capacitance?

B. In Figure 1-19, what is the total capacitance?

Answers
A. \( \frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_N} \)

B. \( \frac{1}{C_T} = \frac{1}{1} + \frac{1}{2} = \frac{3}{2} \), thus \( C_T = \frac{2}{3} \)

In each of these examples the capacitors are placed in series. Find the total capacitance.

Questions
A. \( C_1 = 10 \, \mu F \quad C_2 = 5 \, \mu F \)

B. \( C_1 = 220 \, \mu F \quad C_2 = 330 \, \mu F \quad C_3 = 470 \, \mu F \)

C. \( C_1 = 0.33 \, \mu F \quad C_2 = 0.47 \, \mu F \quad C_3 = 0.68 \, \mu F \)

Answers
A. 3.3 \, \mu F

B. 103.06 \, \mu F

C. 0.15 \, \mu F
The few simple principles reviewed in this chapter are those you need to begin the study of electronics. Following is a summary of these principles:

- The basic electrical circuit consists of a source (voltage), a load (resistance), and a path (conductor or wire).
- The voltage represents a charge difference.
- If the circuit is a complete circuit, then electrons will flow in what is called current flow. The resistance offers opposition to current flow.
- The relationship between V, I, and R is given by Ohm’s law: \[ V = I \times R \]
- Resistance could be a combination of resistors in series, in which case you add the values of the individual resistors together to get the total resistance. \[ R_T = R_1 + R_2 + \cdots + R_N \]
- Resistance could be a combination of resistors in parallel, in which case you find the total by using the following formula: \[ \frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N} \] or \[ R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N}} \]
- The power delivered by a source is found by using the following formula: \[ P = VI \]
- The power dissipated by a resistance is found by using the following formula: \[ P = I^2R \quad \text{or} \quad P = \frac{V^2}{R} \]
- If you know the total applied voltage, \( V_s \), the voltage across one resistor in a series string of resistors is found by using the following voltage divider formula: \[ V_1 = \frac{V_s R_1}{R_T} \]
- The current through one resistor in a two resistor parallel circuit with the total current known is found by using the current divider formula: \[ I_1 = \frac{I_T R_2}{(R_1 + R_2)} \]
Kirchhoff’s voltage law (KVL) relates the voltage drops in a series circuit to the total applied voltage.

\[ V_S = V_1 + V_2 + \cdots + V_N \]

Kirchhoff’s current law (KCL) relates the currents at a junction in a circuit by saying that the sum of the input currents equals the sum of the output currents. For a simple parallel circuit, this becomes the following where \( I_T \) is the input current:

\[ I_T = I_1 + I_2 + \cdots + I_N \]

A switch in a circuit is the control device that directs the flow of current or, in many cases, allows that current to flow.

Capacitors are used to store electric charge in a circuit. They also allow current or voltage to change at a controlled pace. The circuit time constant is found by using the following formula:

\[ \tau = R \times C \]

At one time constant in an RC circuit, the values for current and voltage have reached 63 percent of their final values. At five time constants, they have reached their final values.

Capacitors in parallel are added to find the total capacitance.

\[ C_T = C_1 + C_2 + \cdots + C_N \]

Capacitors in series are treated the same as resistors in parallel to find a total capacitance.

\[ \frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_N} \quad \text{or} \quad C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_N}} \]

**DC Pre-Test**

The following problems and questions will test your understanding of the basic principles presented in this chapter. You will need a separate sheet of paper for your calculations. Compare your answers with the answers provided following the test. You will find that many of the problems can be worked more than one way.

Questions 1-5 use the circuit shown in Figure 1-20. Find the unknown values indicated using the values given.
1. $R_1 = 12$ ohms, $R_2 = 36$ ohms, $V_S = 24$ V  
   $R_T =$ ___________ , $I =$ ___________

2. $R_1 = 1$ KΩ, $R_2 = 3$ KΩ, $I = 5$ mA  
   $V_1 =$ ___________ , $V_2 =$ ___________ , $V_S =$ ___________

3. $R_1 = 12$ kΩ, $R_2 = 8$ kΩ, $V_S = 24$ V  
   $V_1 =$ ___________ , $V_2 =$ ___________ 

4. $V_S = 36$ V, $I = 250$ mA, $V_1 = 6$ V  
   $R_2 =$ ___________

5. Now, go back to problem 1. Find the power dissipated by each resistor and the total power delivered by the source.  
   $P_1 =$ ___________ , $P_2 =$ ___________ , $P_T =$ ___________

Questions 6-8 will use the circuit shown in Figure 1-21. Again, find the unknowns using the given values.

6. $R_1 = 6$ kΩ, $R_2 = 12$ kΩ, $V_S = 20$ V  
   $R_T =$ ___________ , $I =$ ___________

7. $I = 2$ A, $R_1 = 10$ ohms, $R_2 = 30$ ohms  
   $I_1 =$ ___________ , $I_2 =$ ___________
8. \( V_S = 12 \text{ V}, I = 300 \text{ mA}, R_1 = 50 \text{ ohms} \)
   \( R_2 = \quad , P_1 = \quad \)

9. What is the maximum current that a 220 ohm resistor can safely have if its power rating is 1/4 watts?
   \( I_{\text{MAX}} = \quad \)

10. In a series RC circuit the resistance is 1 k\( \Omega \), the applied voltage is 3 V, and the time constant should be 60 \( \mu \text{sec} \).
    A. What is the required value of \( C \)?
       \( C = \quad \)
    B. What will be the voltage across the capacitor 60 \( \mu \text{sec} \) after the switch is closed?
       \( V_C = \quad \)
    C. At what time will the capacitor be fully charged?
       \( T = \quad \)

11. In the circuit shown in Figure 1-22, when the switch is at position 1, the time constant should be 4.8 ms.
    A. What should be the value of resistor \( R_1 \)?
       \( R_1 = \quad \)
    B. What will be the voltage on the capacitor when it is fully charged, and how long will it take to reach this voltage?
       \( V_C = \quad , T = \quad \)
    C. After the capacitor is fully charged, the switch is thrown to position 2. What is the discharge time constant and how long will it take to completely discharge the capacitor?
       \( \tau = \quad , T = \quad \)

Figure 1-22
12. Three capacitors are available with the following values:

\[ C_1 = 8 \, \mu F; \quad C_2 = 4 \, \mu F; \quad C_3 = 12 \, \mu F. \]

A. What is \( C_T \) if all three are connected in parallel?

\[ C_T = \quad \text{________} \]

B. What is \( C_T \) if they are connected in series?

\[ C_T = \quad \text{________} \]

C. What is \( C_T \) if \( C_1 \) is in series with the parallel combination of \( C_2 \) and \( C_3 \)?

\[ C_T = \quad \text{________} \]

**Answers to DC Pre-Test**

If your answers do not agree with those provided here, review the problems indicated in parentheses before you go on to the next chapter. If you still feel uncertain about these concepts, go to a Web site such as [www.BuildingGadgets.com](http://www.BuildingGadgets.com) and work through DC tutorials listed there.

It is assumed that Ohm’s law is well known, so problem 4 will not be referenced.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>( R_T = 48 ) ohms, ( I = 0.5 ) A</td>
</tr>
<tr>
<td>2.</td>
<td>( V_1 = 5 ) V, ( V_2 = 15 ) V, ( V_S = 20 ) V</td>
</tr>
<tr>
<td>3.</td>
<td>( V_1 = 14.4 ) V, ( V_2 = 9.6 ) V</td>
</tr>
<tr>
<td>4.</td>
<td>( R_2 = 120 ) ohms</td>
</tr>
<tr>
<td>5.</td>
<td>( P_1 = 3 ) W, ( P_2 = 9 ) W, ( P_T = 12 ) W</td>
</tr>
<tr>
<td>6.</td>
<td>( R_T = 4 , k\Omega, , I = 5 ) mA</td>
</tr>
<tr>
<td>7.</td>
<td>( I_1 = 1.5 ) A, ( I_2 = 0.5 ) A</td>
</tr>
<tr>
<td>8.</td>
<td>( R_2 = 200 ) ohms, ( P_1 = 2.88 ) W</td>
</tr>
<tr>
<td>9.</td>
<td>( I_{\text{MAX}} = 33.7 ) mA</td>
</tr>
<tr>
<td>10.</td>
<td>A. ( C = 0.06 ) ( \mu F )</td>
</tr>
<tr>
<td></td>
<td>B. ( V_C = 1.9 ) V</td>
</tr>
<tr>
<td></td>
<td>C. ( T = 300 ) ( \mu )sec</td>
</tr>
</tbody>
</table>
### Chapter 1 - DC Review and Pre-Test

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>A.</td>
<td>$R_1 = 30 , k\Omega$</td>
<td>(problems 35, 39 and 40)</td>
</tr>
<tr>
<td></td>
<td>B.</td>
<td>$V_C = 15 , V, T = 24 , ms$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.</td>
<td>$\tau = 1.6 , ms, T = 8.0 , ms$</td>
<td>(39–40)</td>
</tr>
<tr>
<td>12.</td>
<td>A.</td>
<td>24 $\mu F$</td>
<td>(problems 41 and 42)</td>
</tr>
<tr>
<td></td>
<td>B.</td>
<td>2.18 $\mu F$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.</td>
<td>5.33 $\mu F$</td>
<td>(42–43)</td>
</tr>
</tbody>
</table>
The main characteristic of a diode is that it conducts electricity in one direction only. Historically, the first vacuum tube was a diode; it was also known as a rectifier. The modern diode is a semiconductor device. It is used in all applications where the older vacuum tube diode was used, but it has the advantages of being much smaller, easier to use, and less expensive.

A semiconductor is a crystalline material that, depending on the conditions, can act as a conductor (allowing the flow of electric current) or an insulator (preventing the flow of electric current). Techniques have been developed to customize the electrical properties of adjacent regions of semiconductor crystals, which allow the manufacture of very small diodes, as well as transistors and integrated circuits.

When you complete this chapter you will be able to do the following:

- Specify the uses of diodes in DC circuits
- Determine from a circuit diagram whether a diode is forward or reverse biased
- Recognize the characteristic V-I curve for a diode
- Specify the knee voltage for a silicon or a germanium diode
- Calculate current and power dissipation in a diode
- Define diode breakdown
- Differentiate between zeners and other diodes
- Determine when a diode can be considered “perfect”
Understanding Diodes

1 Silicon and germanium are semiconductor materials used in the manufacture of diodes, transistors, and integrated circuits. Semiconductor material is refined to an extreme level of purity, and then minute, controlled amounts of a specific impurity are added (a process called doping). Based on which impurity is added to a region of a semiconductor crystal, that region is said to be \textit{N type} or \textit{P type}. In addition to electrons (which are negative charge carriers used to conduct charge in a conventional conductor), semiconductors contain positive charge carriers called \textit{holes}. The impurities added to an N type region increases the number of electrons capable of conducting charge, while the impurities added to a P type region increase the number of holes that are capable of conducting charge.

When a semiconductor chip contains an N doped region adjacent to a P doped region, a \textit{diode junction} (often called a \textit{PN junction}) is formed. Diode junctions can also be made with either silicon or germanium. However, silicon and germanium are never mixed when making PN junctions.

\textbf{Question}

Which diagrams in Figure 2-1 show diode junctions?

![Figure 2-1]

\textbf{Answer}

Diagrams (b) and (e) only

2 In a diode, the P material is called the \textit{anode}. The N material is called the \textit{cathode}.

\textbf{Question}

Identify which part of the diode shown in Figure 2-2 is P material and which part is N material.
Anode  Cathode

Figure 2-2

Answer
The anode is P material, the cathode is N material.

3 Diodes are useful because electric current will flow through a PN junction in one direction only. Figure 2-3 shows the direction in which the current flows.

P  N

Figure 2-3

The circuit symbol for a diode is shown in Figure 2-4. The arrowhead points in the direction of current flow. While the anode and cathode are indicated here, they are not usually indicated in circuit diagrams.

Anode  Cathode

Figure 2-4

Question
In a diode, does current flow from anode to cathode, or cathode to anode?

Answer
Current flows from anode to cathode.

4 In the circuit shown in Figure 2-5, an arrow shows the direction of current flow.

Figure 2-5
Questions

A. Is the diode connected correctly to permit current to flow?

B. Notice the way the battery and the diode are connected. Is the anode at a higher or lower voltage than the cathode?

Answers

A. Yes.

B. The anode is connected to the positive battery terminal, and the cathode is connected to the negative battery terminal. Therefore, the anode is at a higher voltage than the cathode.

When the diode is connected so that the current is flowing, it is said to be forward biased. In a forward biased diode, the anode is connected to a higher voltage than the cathode, and current is flowing. Examine the way the diode is connected to the battery in Figure 2-6.

![Figure 2-6](image)

Question

Is the diode forward biased or not? Give the reasons for your answer.

Answer

No, it is not forward biased. The cathode is connected to the positive battery terminal and the anode is connected to the negative battery terminal. Therefore, the cathode is at a higher voltage than the anode.
6. When the cathode is connected to a higher voltage level than the anode, the diode cannot conduct. In this case, the diode is said to be reverse biased.

![Figure 2-7](image)

**Question**

Draw a reverse biased diode in the circuit shown in Figure 2-7.

---

**Answer**

Your drawing should look something like Figure 2-8.

![Figure 2-8](image)

---

7. In many circuits, the diode is often considered to be a perfect diode to simplify calculations. A perfect diode has zero voltage drop in the forward direction, and conducts no current in the reverse direction.

**Question**

From your knowledge of basic electricity, what other component has zero voltage drop across its terminals in one condition, and conducts no current in an alternative condition?
The mechanical switch. When closed, it has no voltage drop across its terminals, and when open, it conducts no current.

8. A forward biased perfect diode can thus be compared to a closed switch. It has no voltage drop across its terminals and current flows through it.

A reverse biased perfect diode can be compared to an open switch. No current flows through it and the voltage difference between its terminals equals the supply voltage.

Question

Which of the switches shown in Figure 2-9 performs like a forward biased perfect diode?

Answer

Switch (2) represents a closed switch and, like a forward biased perfect diode, allows current to flow through it. There is no voltage drop across its terminals.

The Diode Experiment

9. If you have access to electronic equipment, you may wish to perform the simple experiment described in the next few problems. If this is the first time you have tried such an experiment, get help from an instructor or someone who is familiar with electronic experiments.

If you do not have access to equipment, do not skip this exercise. Read through the experiment and try to picture or imagine the results. This is sometimes called “dry-labbing” the experiment. You can learn a lot from this exercise, even though it is always better to actually perform the experiment. This advice also applies to the other experiments that are given in many of the following chapters.
The objective of this experiment is to plot the V-I curve (also called a *characteristic curve*) of a diode, which shows how current flow through the diode varies with the applied voltage. As shown in Figure 2-10, the I-V curve for a diode demonstrates that if very little voltage is applied to a diode, current will not flow. However, once the applied voltage exceeds a certain value, the current flow increases quickly.

![Figure 1](image1)

**Figure 2-10**

In performing this experiment, you will gain experience in the following:

- Setting up a simple electronic experiment
- Measuring voltage and current
- Plotting a graph of these

Set up the circuit shown on Figure 2-11. The circled A and V designate meters. The ammeter will measure current, and the voltmeter will measure voltage in the circuit.

![Figure 2-11](image2)

You can use two multimeters set to either measure current or voltage. Because you need to change the resistance at each step in the experiment, try using a 1
megohm potentiometer and measure its resistance value after each adjustment. If you don't have a 1 megohm potentiometer, but do have a collection of resistors with values ranging from a few hundred ohms to 1 megohm, you can simply change resistors at each step. Carefully check your circuit against the diagram, especially the direction of the battery and the diode.

Once you have checked your circuit, follow these steps:

1. Set R to its highest value and record it in the following table.

<table>
<thead>
<tr>
<th>R (ohms)</th>
<th>V (volts)</th>
<th>I (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Close the switch and measure I and V. Record them in the table.

3. Lower the value of R a little to get a different reading of I.

4. Measure and record I and V again.

5. Continue in this fashion, taking as many readings as possible. There will suddenly come a point when V will not increase, but I will increase very rapidly. STOP.

**NOTE** If V gets very large — above 3 or 4 volts — and I remains very small, then the diode is backward. Reverse it and start again.
6. Graph the points recorded in the table, using the blank graph in Figure 2-12. Your curve should look like the one in Figure 2-10.

Figure 2-12

The measurements in the following table were taken using a commercial 1N4001 diode.

<table>
<thead>
<tr>
<th>R (ohms)</th>
<th>V (volts)</th>
<th>I (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MΩ</td>
<td>0.30</td>
<td>0.02</td>
</tr>
<tr>
<td>220 kΩ</td>
<td>0.40</td>
<td>0.05</td>
</tr>
<tr>
<td>68 kΩ</td>
<td>0.46</td>
<td>0.14</td>
</tr>
<tr>
<td>33 kΩ</td>
<td>0.50</td>
<td>0.26</td>
</tr>
<tr>
<td>15 kΩ</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>10 kΩ</td>
<td>0.55</td>
<td>0.80</td>
</tr>
<tr>
<td>6.8 kΩ</td>
<td>0.56</td>
<td>1.20</td>
</tr>
<tr>
<td>4.7 kΩ</td>
<td>0.60</td>
<td>2.00</td>
</tr>
<tr>
<td>3.3 kΩ</td>
<td>0.62</td>
<td>2.80</td>
</tr>
<tr>
<td>2.2 kΩ</td>
<td>0.64</td>
<td>4.20</td>
</tr>
<tr>
<td>1.5 kΩ</td>
<td>0.65</td>
<td>5.50</td>
</tr>
</tbody>
</table>
### Chapter 2 = The Diode

<table>
<thead>
<tr>
<th>R</th>
<th>V</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohms</td>
<td>volts</td>
<td>mA</td>
</tr>
<tr>
<td>1.0 kΩ</td>
<td>0.67</td>
<td>8.40</td>
</tr>
<tr>
<td>680 Ω</td>
<td>0.70</td>
<td>12.00</td>
</tr>
<tr>
<td>470 Ω</td>
<td>0.70</td>
<td>18.00</td>
</tr>
<tr>
<td>330 Ω</td>
<td>0.71</td>
<td>23.00</td>
</tr>
</tbody>
</table>

Further reductions in the value of R will cause very little increase in the voltage, but will produce large increases in the current.

Figure 2-13 is the V-I curve generated using the measurements shown in the preceding table.

![Figure 2-13](image)

The V-I curve (or diode characteristic curve) is repeated in Figure 2-14 with three important regions marked on it.

The most important region is the **knee region**. This is not a sharply defined changeover point, but it occupies a very narrow range of the curve, where the diode resistance changes from high to low.

The ideal curve is shown for comparison.
For the diode used in this problem, the knee voltage is about 0.7 V, which is typical for a silicon diode. This means (and your data should verify this) that at voltage levels below 0.7 V, the diode has such a high resistance that it limits the current flow to a very low value. This characteristic knee voltage is sometimes referred to as a \textit{threshold voltage}. If you use a germanium diode, the knee voltage is about 0.3 V.

\textbf{Question}

What is the knee voltage for the diode you used?

\textbf{Answer}

If you use silicon, the knee voltage would be approximately 0.7 V; with germanium, it would be approximately 0.3 V.

The knee voltage is also a \textit{limiting voltage}. That is, it is the highest voltage that can be obtained across the diode in the forward direction.
Questions

A. Which has the higher limiting voltage, germanium or silicon?

B. What happens to the diode resistance at the limiting or knee voltage?

Answers

A. Silicon, with a limiting voltage of 0.7 V, is higher than germanium, which has a limiting voltage of only 0.3 V.

B. It changes from high to low.

NOTE You will be using these knee voltages in many later chapters as the voltage drop across the PN junction when it is forward biased.

Refer back to the diagram of resistance regions in Figure 2-14.

Question

What happens to the current when the voltage becomes limited at the knee?

Answer

It increases rapidly.

For any given diode, the knee voltage will not be exactly 0.7 V or 0.3 V. Rather, it will vary slightly. But when using diodes in practice (that is, imperfect diodes), you can make two assumptions:

- The voltage drop across the diode is either 0.7 V or 0.3 V.
- Excessive current is prevented from flowing through the diode by using the appropriate resistor in series with the diode.
Questions

A. Why are imperfect diodes specified here?

B. Would you use a high or low resistance to prevent excessive current?

Answers

A. All diodes are imperfect, and the 0.3 or 0.7 voltage values are only approximate. In fact, in some later problems, it is assumed that the voltage drop across the diode, when it is conducting, is 0 V. This assumes, then, that as soon as you apply any voltage above 0, current flows in an ideal resistor (that is, the knee voltage on the V-I curve for an ideal diode is 0 volts).

B. Generally use a high resistance. However, the actual resistance value can be calculated given the applied voltage and the maximum current the diode can withstand.

Calculate the current through the diode in the circuit shown in Figure 2-15, using the steps in the following question.

Questions

A. The voltage drop across the diode is known. It is 0.7 V for silicon and 0.3 V for germanium. (“Si” near the diode means it is silicon.) Write down the diode voltage drop.

\[ V_D = \]
48 Chapter 2 = The Diode

B. Find the voltage drop across the resistor. This can be calculated using
   \( V_R = V_s - V_D \). This is taken from KVL, which was discussed in Chapter 1.
   \( V_R = \) ________________

C. Calculate the current through the resistor. Use \( I = \frac{V_R}{R} \).
   \( I = \) ________________

D. Finally, determine the current through the diode.
   \( I = \) ________________

Answers
You should have written these values.
A. 0.7 V
B. \( V_R = V_s - V_D = 5 \text{ V} - 0.7 \text{ V} = 4.3 \text{ V} \)
C. \( I = \frac{V_R}{R} = \frac{4.3 \text{ V}}{1 \text{k} \Omega} = 4.3 \text{ mA} \)
D. 4.3 mA (In a series circuit the same current runs through each component.)

In practice, when the battery voltage is 10 V or above, the voltage drop across the diode is often considered to be 0 V instead of 0.7 V.
The assumption here is that the diode is a perfect diode, and the knee voltage is at 0 V rather than at a threshold value that must be exceeded. As discussed later, this assumption is often used in many electronic designs.

Questions
A. Calculate the current through the silicon diode shown in Figure 2-16.
   \( V_D = \) ________________
   \( V = V_s - V_D = \) ________________
   \( I = \frac{V_R}{R} = \) ________________
   \( I_D = \) ________________
The Diode Experiment

B. Calculate the current through the perfect diode shown in Figure 2-16.

\[ V_D = \] 
\[ V_R = V_s - V_D = \] 
\[ I = \frac{V_R}{R} = \] 
\[ I_D = \] 

Answers

A. 0.7 V; 9.3 V; 9.3 mA; 9.3 mA
B. 0 V; 10 V; 10 mA; 10 mA

The difference in the values of the two currents found in problem 15 is less than 10 percent of the total current. That is, 0.7 mA is less than 10 percent of 10 mA. Many electronic components have a plus or minus 5 percent tolerance in their nominal values. This means that a 1 k resistor can be anywhere from 950 ohms to 1,050 ohms, meaning that the value of current through a resistor can vary plus or minus 5 percent.
Because of slight variance in component values, calculations are often simplified if the simplification does not change values by more than 10 percent. Therefore, a diode is often assumed to be perfect when the supply voltage is 10 V or more.

Questions

A. Examine the circuit in Figure 2-17. Is it safe to assume that the diode is perfect?

![Figure 2-17](image)

B. Calculate the current through the diode.

Answers

A. Yes, it can be considered a perfect diode.
B. \( I = 10 \text{ mA} \)

When a current flows through a diode, it causes heating and power dissipation, just as with a resistor. The power formula for resistors is \( P = V \times I \). This same formula can be applied to diodes to find the power dissipation. To calculate the power dissipation in a diode, you must first calculate the current as shown previously. The voltage drop in this formula is assumed to be 0.7 V for a silicon diode, even if you considered it to be 0 V when calculating the current.

For example, a silicon diode has 100 mA flowing through it. Determine how much power the diode dissipates.

\[
P = (0.7 \text{ V})(100 \text{ mA}) = 70 \text{ mW}
\]
**Question**

Assume a current of 2 amperes is flowing through a silicon diode. How much power is being dissipated?

**Answer**

\[ P = (0.7 \text{ V})(2 \text{ A}) = 1.4 \text{ watts} \]

Diodes are made to dissipate a certain amount of power, and this is quoted as a maximum power rating in the manufacturer’s specifications of the diode.

Assume a silicon diode has a maximum power rating of 2 watts. How much current can it safely pass?

\[ I = \frac{P}{V} = \frac{2 \text{ watts}}{0.7 \text{ V}} \]

\[ = 2.86 \text{ A (rounded off to two decimal places)} \]

Provided the current in the circuit does not exceed this, the diode will not overheat and burn out.

**Question**

Suppose the maximum power rating of a germanium diode is 3 watts. What is its highest safe current?

**Answer**

\[ I = \frac{3 \text{ watts}}{0.3 \text{ V}} = 10 \text{ A} \]

Answer the following questions for another example.
52 Chapter 2 - The Diode

Questions

A. Would a 3 watt silicon diode be able to carry the current calculated for the germanium diode for problem 18?

B. What would be its safe current?

Answers

A. No, 10 amperes would cause a power dissipation of 7 watts, which would burn up the diode.

B. \[ I = \frac{3}{0.7} = 4.3 \text{ A} \]

Any current less than this would be safe.

The next several examples concentrate on finding the current through the diode. Look at the circuit shown in Figure 2-18.

![Figure 2-18](image)

The total current from the battery flows through \( R_1 \), and then splits into \( I_2 \) and \( I_D \). \( I_2 \) flows through \( R_2 \) and \( I_D \) through the diode.

Questions

A. What is the relationship between \( I_T \), \( I_2 \), and \( I_D \)?
B. What is the value of $V_D$?

Answers

A. Remember KCL, $I_T = I_2 + I_D$

B. $V_D = 0.7$ V

To find $I_D$, it is necessary to go through the following steps because there is no way of finding $I_D$ directly.

1. Find $I_2$. This is done using $V_D = R_2 \times I_2$.
2. Find $V_R$. For this use $V_R = V_S - V_D$ (KVL again).
3. Find $I_T$, the current through $R_1$. Use $V_R = I_T \times R_1$.
4. Find $I_D$. This is found by using $I_T = I_2 + I_D$ (KCL again).

To find $I_D$ in the circuit shown in Figure 2-19, go through these steps, and then check your answers.

![Figure 2-19](image)

Questions

A. $I_2 =$

B. $V_R =$

C. $I_T =$
54 Chapter 2 • The Diode

D. \( I_D = \)

---

**Answers**

A. \( I_2 = \frac{V_D}{R_2} = \frac{0.7 \text{ V}}{70 \text{ ohms}} = 0.01 \text{ A} = 10 \text{ mA} \)

B. \( V_R = V_S - V_D = 5 \text{ V} - 0.7 \text{ V} = 4.3 \text{ V} \)

C. \( I_T = \frac{V_R}{R_1} = \frac{4.3 \text{ V}}{43 \text{ ohms}} = 0.1 \text{ A} = 100 \text{ mA} \)

D. \( I_D = I_T - I_2 = 100 \text{ mA} - 10 \text{ mA} = 90 \text{ mA} \)

22 For this problem, refer to your answers in problem 21.

**Question**

What is the power dissipation of the diode in problem 21?

---

**Answer**

\[ P = V_D \times I_D = (0.7 \text{ V})(90 \text{ mA}) = 63 \text{ milliwatts} \]

23 To find the current in the diode for the circuit shown in Figure 2-20, answer these questions in order:

---

**Figure 2-20**
Questions
A. $I_2 = $ ________________
B. $V_R = $ ________________
C. $I_T = $ ________________
D. $I_D = $ ________________

Answers
A. $I_2 = \frac{0.3}{250} = 1.2 \text{ mA}$
B. $V_R = V_S - V_D = 1.6 - 0.3 = 1.3 \text{ V}$
C. $I_T = \frac{V_R}{R_1} = \frac{1.3}{440} = 3 \text{ mA}$
D. $I_D = I_T - I_2 = 1.8 \text{ mA}$

If you are going to take a break soon, this is a good stopping point.

Diode Breakdown

Earlier, you read that if the experiment is not working correctly, then the diode is probably in backward. If you place the diode in the circuit backward — as shown on the right in Figure 2-21 — then almost no current flows. In fact, the current flow is so small, it can be said that no current flows. The V-I curve for a reversed diode looks like the one shown on the left in Figure 2-21.

Figure 2-21
The V-I curve for a perfect diode would show zero current for all voltage values. But for a real diode, a voltage is reached where the diode “breaks down” and the diode allows a large current to flow. The V-I curve for the diode breakdown would then look like the one in Figure 2-22.

If this condition continues, the diode will burn out. You can avoid burning out the diode, even though it is at the breakdown voltage, by limiting the current with a resistor.

**Question**

The diode in the circuit shown in Figure 2-23 is known to break down at 100 V, and it can safely pass 1 ampere without overheating. Find the resistance in this circuit that would limit the current to 1 ampere.

**Answer**

\[ V_R = V_s - V_D = 200 V - 100 V = 100 V \]

Since 1 ampere of current is flowing, then:

\[ R = \frac{V_R}{I} = \frac{100 V}{1 A} = 100 \text{ ohms} \]
All diodes will break down when connected in the reverse direction if excess voltage is applied to them. The breakdown voltage, which is a function of how the diode is made, varies from one type of diode to another. This voltage is quoted in the manufacturer’s datasheet.

Breakdown is not a catastrophic process and does not destroy the diode. If the excessive supply voltage is removed, the diode will recover and operate normally. You can use it safely many more times, provided the current is limited to prevent the diode from burning out.

A diode will always break down at the same voltage, no matter how many times it is used.

The breakdown voltage is often called the peak inverse voltage (PIV) or the peak reverse voltage (PRV). Following are the PIVs of some common diodes:

<table>
<thead>
<tr>
<th>DIODE</th>
<th>PIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4001</td>
<td>50 V</td>
</tr>
<tr>
<td>1N4002</td>
<td>100 V</td>
</tr>
<tr>
<td>1N4003</td>
<td>200 V</td>
</tr>
<tr>
<td>1N4004</td>
<td>400 V</td>
</tr>
<tr>
<td>1N4005</td>
<td>600 V</td>
</tr>
<tr>
<td>1N4006</td>
<td>800 V</td>
</tr>
</tbody>
</table>

**Questions**

A. Which can permanently destroy a diode, excessive current or excessive voltage?

B. Which is more harmful to a diode, breakdown or burnout?

**Answers**

A. Excessive current. Excessive voltage will not harm the diode if the current is limited.

B. Burnout. Breakdown is not necessarily harmful, especially if the current is limited.
The Zener Diode

Diodes can be manufactured so that breakdown occurs at lower and more precise voltages than those just discussed. These types of diodes are called zener diodes, so named because they exhibit the "Zener effect" — a particular form of voltage breakdown. At the zener voltage, a small current will flow through the zener diode. This current must be maintained to keep the diode at the zener point. In most cases, a few milliamperes are all that is required. The zener diode symbol and a simple circuit are shown in Figure 2-24.

![Zener Diode Symbol](image)

Figure 2-24

In this circuit, the battery determines the applied voltage. The zener diode determines the voltage drop (labeled $V_z$) across it. The resistor determines the current flow. Zeners are used to maintain a constant voltage at some point in a circuit.

Question

Why are zeners used for this purpose, rather than ordinary diodes?

Answer

Because zeners have a precise breakdown voltage

Examine an application in which a constant voltage is desirable — for example, a lamp driven by a DC generator. In this example, when the generator is turning at full speed, it puts out 50 V. When it is running more slowly, the voltage can drop to 35 V. You want to illuminate a 20 V lamp with this generator. Assume the lamp draws 1.5 A. The circuit is shown in Figure 2-25.
The Zener Diode

You need to determine a suitable value for the resistance. Follow these steps to find a suitable resistance value:

1. Find $R_L$, the lamp resistance. Use
   \[ R_L = \frac{V_L}{I} \]
2. Find $V_R$. Use $V_S = V_R + V_L$
3. Find R. Use
   \[ R = \frac{V_R}{I} \]

**Questions**

Work through these steps, and write your answers here.

A. $R_L =$

B. $V_R =$

C. $R =$

**Answers**

A. $R_L = \frac{20 \text{ V}}{1.5 \text{ A}} = 13.33$ ohms

B. $V_R = 50 \text{ V} - 20 \text{ V} = 30 \text{ V}$
Chapter 2  The Diode

C. \[ R = \frac{50 \text{ V} - 20 \text{ V}}{1.5 \text{ A}} = \frac{30 \text{ V}}{1.5 \text{ A}} = 20 \text{ ohms} \]

28 Assume now that the 20 ohm resistor calculated in problem 27 is in place, and the voltage output of the generator drops to 35 V, as shown in Figure 2-26. This is similar to what happens when a battery gets old. Its voltage level decays and it will no longer have sufficient voltage to produce the proper current. This results in the lamp glowing less brightly, or perhaps not at all. Note, however, that the resistance of the lamp stays the same.

![Figure 2-26](image)

Questions

A. Find the total current flowing. Use

\[ I_T = \frac{V_S}{R + R_L} \]

\[ I_T = \]

B. Find the voltage drop across the lamp. Use \( V_L = I_T \times R_L \)

\[ V_L = \]

C. Have the voltage and current increased or decreased?

Answers

A. \[ I_T = \frac{35 \text{ V}}{20 \Omega + 13.3 \Omega} = \frac{35 \text{ V}}{33.3 \Omega} = 1.05 \text{ A} \]
B. \( V_L = 1.05 \text{ A} \times 13.3 \ \Omega = 14 \text{ V} \)

C. Both have reduced in value.

29. In many applications, a lowering of voltage across the lamp (or some other component) may be unacceptable. This can be prevented by using a zener diode, as shown in the circuit in Figure 2-27.

If you choose a 20 V zener (that is, one that has a 20 V drop across it), then the lamp will always have 20 V across it, no matter what the output voltage is from the generator (provided, of course, that the output from the generator is always above 20 V).

Questions

Say that the voltage across the lamp is constant, and the generator output drops.

A. What happens to the current through the lamp?

B. What happens to the current through the zener?

Answers

A. The current stays constant because the voltage across the lamp stays constant.

B. The current decreases because the total current decreases.
To make this circuit work and keep 20 V across the lamp at all times, you must find a suitable value of R. This value should allow sufficient total current to flow to provide 1.5 amperes required by the lamp, and the small amount required to keep the diode at its zener voltage. To do this, you start at the “worst case” condition. (“Worst case” design is a common practice in electronics. It is used to ensure that equipment will work under the most adverse conditions.) The worst case here would occur when the generator is putting out only 35 V. Figure 2-28 shows the paths that current would take in this circuit.

Find the value of R which will allow 1.5 A to flow through the lamp. How much current will flow through the zener diode? You can choose any current you like, provided it is above a few milliamperes, and provided it will not cause the zener diode to burn out. In this example assume that the zener current $I_z$ is 0.5 A.

Questions
A. What is the total current through R?
   $I_R = \ldots$
B. Calculate the value of R.
   $R = \ldots$

Answers
A. $I_R = I_L + I_Z = 1.5 \text{ A} + 0.5 \text{ A} = 2 \text{ A}$
B. $R = \frac{(V_S - V_Z)}{I_R} = \frac{(35 \text{ volts} - 20 \text{ volts})}{2 \text{ A}} = 7.5 \text{ ohms}$
   A different choice of $I_z$ here would produce another value of R.
Now take a look at what happens when the generator is supplying 50 V, as shown in Figure 2-29.

\[ I_L = 1.5 \, \text{A} \]
\[ R = 7.5 \, \Omega \]

\[ 50 \, \text{V} \]
\[ 20 \, \text{V} \]

Figure 2-29

Because the lamp still has 20 V across it, it will still draw only 1.5 A. But the total current and the zener current will change.

Questions

A. Find the total current through R.

\[ I_R = \]

B. Find the zener current.

\[ I_Z = \]

Answers

A. \[ I_R = \frac{(V_S - V_Z)}{R} = \frac{(50 - 20)}{7.5} = 4 \, \text{A} \]

B. \[ I_Z = I_R - I_L = 4 - 1.5 = 2.5 \, \text{A} \]

Although the lamp voltage and current remain the same, the total current and the zener current both changed.

Questions

A. What has happened to \( I_T (I_R) \)?
B. What has happened to $I_Z$?

### Answers

A. $I_T$ has increased by 2 A.
B. $I_Z$ has increased by 2 A.

Note that the increase in $I_T$ flows through the zener diode and not through the lamp.

33. The power dissipated by the zener diode changes as the generator voltage changes.

### Questions

A. Find the power dissipated when the generator voltage is 35 V.

B. Now find the power when the generator is at 50 V.

### Answers

A. $P_Z = V \times I = (20 \text{ volts}) (0.5 \text{ A}) = 10 \text{ watts}$
B. $P_Z = V \times I = (20 \text{ volts}) (2.5 \text{ A}) = 50 \text{ watts}$

If you use a zener diode with a power rating of 50 watts or more, it will not burn out.

34. Use Figure 2-30 to answer the following question.

![Figure 2-30](image-url)
**Question**

For the circuit shown in Figure 2-30, what power rating should the zener diode have? The current and voltage ratings of the lamp are given.

---

**Answer**

At 24 volts, assuming a zener current of 0.5 A:

\[
R = \frac{9}{0.575} = 15.7 \text{ ohms}
\]

At 60 V:

\[
I_R = \frac{45}{15.7} = 2.87 \text{A}; \text{ therefore } I_Z \approx 2.8 \text{ A}
\]

\[
P_Z = (15 \text{ volts})(2.8 \text{ A}) = 42 \text{ watts}
\]

---

**Summary**

Semiconductor diodes are used extensively in modern electronic circuits. The main advantages of semiconductor diodes are:

- They are very small.
- They are rugged and reliable if properly used. You must remember that excessive reverse voltage or excessive forward current could damage or destroy the diode.
- Diodes are very easy to use, as there are only two connections to make.
- They are inexpensive.
- They can be used in all types of electronic circuits, from simple DC controls to radio and TV circuits.
- They can be made to handle a wide range of voltage and power requirements.
- Specialized diodes (which have not been covered here) can perform particular functions, which no other components can handle.
- Finally, as you will see in the next chapter, diodes are an integral part of transistors.

All of the many uses of semiconductor diodes are based on the fact they conduct in *one direction only*. Diodes are often used for the following:

- Protecting circuit components from voltage spikes
- Converting AC to DC
Chapter 2 • The Diode

- Protecting sensitive components from high-voltage spikes
- Building high speed switches
- Rectifying radio frequency signals

Self-Test

The following questions test your understanding of this chapter. Use a separate sheet of paper for your diagrams or calculations. Compare your answers with the answers that follow the test.

1. Draw the circuit symbol for a diode, labeling each terminal.

2. What semiconductor materials are used in the manufacture of diodes?

3. Draw a circuit with a battery, resistor, and a forward biased diode.

4. What is the current through a reverse biased perfect diode?

5. Draw a typical V-I curve of a forward biased diode. Show the knee voltage.

6. What is the knee voltage for silicon?

Germanium?

7. In the circuit shown in Figure 2-31, \( V_S = 10 \) V and \( R = 100 \) ohms. Find the current through the diode, assuming a perfect diode.
8. Calculate question 7 using these values: \( V_S = 3 \, \text{V} \) and \( R = 1 \, \text{k}\Omega \).

9. In the circuit shown in Figure 2-32, find the current through the diode.

\[
\begin{align*}
V_S &= 10 \, \text{V} \\
R_1 &= 10 \, \text{k}\Omega \\
R_2 &= 1 \, \text{k}\Omega
\end{align*}
\]

10. In the circuit shown in Figure 2-33, find the current through the zener diode.

\[
\begin{align*}
V_S &= 20 \, \text{V} \\
V_Z &= 10 \, \text{V} \\
R_1 &= 1 \, \text{k}\Omega \\
R_2 &= 2 \, \text{k}\Omega
\end{align*}
\]

**Figure 2-31**

**Figure 2-32**

**Figure 2-33**
11. If the supply voltage for question 10 increases to 45 V, what is the current in the zener diode?

12. What is the maximum power dissipated for the diode in questions 10 and 11?

Answers to Self-Test

If your answers do not agree with those given below, review the problems indicated in parentheses before you go on to the next chapter.

1. See Figure 2-34. 
   (problem 3)

2. Germanium and silicon 
   (problem 1)

3. See Figure 2-35. 
   (problem 4)

4. There is zero current flowing through the diode. 
   (problem 6)
5. See Figure 2-36. (problem 9 and 10)

![Knee voltage graph]

**Figure 2.36**

6. Si = 0.7 V; Ge = 0.3 V (These are approximate.) (problem 10)

7. \( I_D = 100 \text{ mA} \) (problem 14)

8. As \( V_S = 3 \text{ V} \), do not ignore the voltage drop across the diode. Thus, \( I_D = 2.7 \text{ mA} \) (problem 14)

9. Ignore \( V_D \) in this case. Thus, \( I_D = 0.3 \text{ mA} \). If \( V_D \) is not ignored, \( I_D = 0.23 \text{ mA} \). (problem 21)

10. \( I_Z = 5 \text{ mA} \) (problem 31)

11. \( I_Z = 30 \text{ mA} \) (problem 31)

12. The maximum power will be dissipated when \( I_Z \) is at its peak value of 30 mA. Therefore, \( P_Z(\text{MAX}) = 0.30 \text{ W} \). (problem 33)
CHAPTER 3

Introduction to the Transistor

The transistor is undoubtedly the most important modern electronic component because it has enabled great and profound changes in electronics and in our daily lives since its discovery in 1948.

This chapter introduces the transistor as an electronic component that acts similarly to a simple mechanical switch, and, in fact, it is actually used as a switch in many modern electronic devices. A transistor can be made to conduct or not conduct an electric current — exactly what a mechanical switch does.

Most transistors used in electronic circuits are bipolar junction transistors (BJT), commonly referred to as bipolar transistors, junction field effect transistors (JFET), or metal oxide silicon field effect transistors (MOSFET). This chapter (along with Chapters 4 and 8) illustrates how BJTs and JFETs function and how they are used in electronic circuits. Because JFETs and MOSFETs function in similar fashion, MOSFETs are not covered here.

An experiment in this chapter will help you to build a simple one-transistor switching circuit. You can easily set up this circuit on a home workbench. You should take the time to obtain the few components required and actually perform the experiment of building and operating the circuit.

In Chapter 4, you will continue to study switching designs and the operation of the transistor as a switch. In Chapter 8, you learn how a transistor can be made to operate as an amplifier. In this mode, the transistor produces an output that is a magnified version of an input signal, which is useful because many electronic signals require amplification. These chapters taken together present an easy introduction to how transistors function and how they are used in basic electronic circuits.
When you complete this chapter, you will be able to do the following:
- Describe the basic construction of a bipolar junction transistor (BJT).
- Describe the basic construction of a junction field effect transistor (JFET).
- Specify the relationship between base and collector current in a BJT.
- Specify the relationship between gate voltage and drain current in a JFET.
- Calculate the current gain for a BJT.
- Compare the transistor to a simple mechanical switch.

**Understanding Transistors**

The diagrams in Figure 3-1 show some common transistor cases (also called packages). The cases protect the semiconductor chip on which the transistor is built, and provide leads that can be used to connect it to other components. For each transistor, the diagrams show the lead designations and how to identify them based on the package design. Transistors can be soldered directly into a circuit, inserted into sockets, or inserted into breadboards. When soldering, you must take great care, because transistors can be destroyed if overheated. A heat sink clipped to the transistor leads between the solder joint and the transistor case can reduce the possibility of overheating. If you’re using a socket, you can avoid exposing the transistor to heat by soldering the connections to the socket before inserting the transistor.
Questions
A. How many leads are there on most transistors?

B. Where there are only two leads, what takes the place of the third lead?

C. What are the three leads or connections called?

D. Why should you take care when soldering transistors into a circuit?

Answers
A. Three.

B. The case can be used instead, as indicated in the diagram on the right side of Figure 3-1. (This type of case is used for power transistors.)

C. Emitter, base, and collector.

D. Excessive heat can damage a transistor.

2. You can think of a bipolar junction transistor as functioning like two diodes, connected back-to-back, as illustrated in Figure 3-2.

Figure 3-2
However, in the construction process, one very important modification is made. Instead of two separate P regions as shown in Figure 3-2, only one very thin region is used, as shown in Figure 3-3.

![Figure 3-3](image)

**Question**

Which has the thicker P region, the transistor shown in Figure 3-3 or two diodes connected back-to-back?

**Answer**

Two diodes. The transistor has a very thin P region.

Because two separate diodes wired back-to-back share two thick P regions, they will not behave like a transistor. The reason for this takes you into the realm of semiconductor physics, so it won’t be covered in this book.

**Question**

Why don’t two diodes connected back-to-back function like a transistor?

**Answer**

The transistor has one thin P region while the diodes share two thick P regions.

The three terminals of a transistor (the base, the emitter, and the collector) are connected as shown in Figure 3-4.
When talking about a transistor as two diodes, you refer to the diodes as the base-emitter diode, and the base-collector diode.

The symbol used in circuit diagrams for the transistor is shown in Figure 3-5, with the two diodes and the junctions shown for comparison. Because of the way the semiconductor materials are arranged, this is known as an NPN transistor.

![Figure 3-4](image_url)

**Figure 3-4**

When talking about a transistor as two diodes, you refer to the diodes as the base-emitter diode, and the base-collector diode.

The symbol used in circuit diagrams for the transistor is shown in Figure 3-5, with the two diodes and the junctions shown for comparison. Because of the way the semiconductor materials are arranged, this is known as an NPN transistor.

![Figure 3-5](image_url)

**Figure 3-5**

*Question*

Which transistor terminal includes an arrowhead?

*Answer*

The emitter

It is also possible to make transistors with a PNP configuration, as shown in Figure 3-6.
Both NPN and PNP type transistors can be made from either silicon or germanium.

Questions
A. Draw a circuit symbol for both an NPN and a PNP transistor. (Use a separate sheet of paper for your drawings.)
B. Which of the transistors represented by these symbols might be silicon?
C. Are silicon and germanium ever combined in a transistor?

Answers
A. See Figure 3-7.
B. Either or both could be silicon. (Either or both could also be germanium.)
C. Silicon and germanium are not mixed in any commercially available transistors. However, researchers are attempting to develop ultra-fast transistors that contain both silicon and germanium.

Take a look at the simple examples using NPN transistors in this and the next few problems.
If a battery is connected to an NPN transistor as shown in Figure 3-8, then a current will flow in the direction shown.

The current, flowing through the base-emitter diode, is called *base current* and is represented by the symbol $I_B$.

**Question**

Would base current flow if the battery were reversed? Give a reason for your answer.

**Answer**

Base current would not flow because the diode would be back-biased.

In the circuit in Figure 3-9, you can calculate the base current using the techniques covered in Chapter 2.

**Question**

Find the base current in the circuit shown in Figure 3-9. (*Hint: Do not ignore the 0.7 V drop across the base-emitter diode.*)

$I_B =$
Chapter 3  Introduction to the Transistor

Answer

Your calculations should look something like this:

\[ I_B = \frac{(V_S - 0.7 \text{ V})}{R} = \frac{(3 - 0.7)}{1 \text{k}\Omega} = \frac{2.3 \text{ V}}{1 \text{k}\Omega} = 2.3 \text{ mA} \]

8 For the circuit shown in Figure 3-10, because the 10 volts supplied by the battery is much greater than the 0.7 V diode drop, you can consider the base-emitter diode to be a perfect diode, and thus assume the voltage drop is 0 V.

![Figure 3-10](image)

Question

Calculate the base current.

\[ I_B = \frac{(10 - 0)}{1 \text{k}\Omega} = \frac{10}{1 \text{k}\Omega} = 10 \text{ mA} \]

9 Look at the circuit shown in Figure 3-11.

![Figure 3-11](image)
**Question**

Will current flow in this circuit? Why or why not?

**Answer**

It will not flow because the base-collector diode is reverse-biased.

10 Examine the circuit shown in Figure 3-12. Notice that batteries are connected to both the base and collector portions of the circuit.

![Figure 3-12](image)

When you connect batteries to both the base and the collector portions of the circuit, currents flowing through the circuit demonstrate a key characteristic of the transistor. This characteristic is sometimes called *transistor action* — if base current flows in a transistor, collector current will also flow.

Examine the current paths shown in Figure 3-13.

![Figure 3-13](image)

**Questions**

A. What current flows through the base-collector diode?
B. What current flows through the base-emitter diode?

C. Which of these currents causes the other to flow?

**Answers**

A. \( I_C \) (the collector current).

B. \( I_B \) and \( I_C \). Note that both of them flow through the base-emitter diode.

C. Base current causes collector current to flow.

No current flows along the path shown by the dotted line in Figure 3-14 from the collector to the base.

---

Up to now, you have studied the NPN bipolar transistor. PNP bipolar transistors work in the same way as NPN bipolar transistors, and can also be used in these circuits.

There is, however, one important circuit difference, which is illustrated in Figure 3-15. The PNP transistor is made with the diodes oriented in the reverse direction from the NPN transistor.

---

![Figure 3-15](image-url)
Questions

Compare Figure 3-15 with Figure 3-13. How are the circuits different relative to the following?

A. Battery connections:

B. Current flow:

Answers

A. The battery is reversed in polarity.
B. The currents flow in the opposite direction.

Figure 3-16 shows the battery connections necessary to produce both base current and collector current in a circuit that uses a PNP transistor.

Question

In which direction do these currents circulate — clockwise or counterclockwise?

Answers

Base current flows counterclockwise.
Collector current flows clockwise.
As stated earlier, NPN and PNP bipolar transistors work in much the same way: Base current causes collector current to flow in both. The only significant difference in using a PNP versus an NPN bipolar transistor is that the polarity of the supply voltage (for both the base and collector sections of the circuit) is reversed. To avoid confusion, bipolar transistors used throughout the rest of this book are NPNs.

Consider the circuit in Figure 3-17. It uses only one battery to supply voltage to both the base and the collector portions of the circuit. The path of the base current is shown in the diagram.

**Questions**

A. Name the components through which the base current flows.

B. Into which terminal of the transistor does the base current flow?

C. Out of which transistor terminal does the base current flow?

D. Through which terminals of the transistor does base current not flow?

**Answers**

A. The battery, the resistor $R_B$, and the transistor
Take a moment to recall the key physical characteristic of the transistor.

**Question**

When base current flows in the circuit shown in Figure 3-17, what other current will flow, and which components will it flow through?

**Answer**

Collector current will flow through the resistor $R_C$ and the transistor.

In Figure 3-18 the arrows indicate the path of the collector current through the circuit.

![Figure 3-18](image)

**Questions**

A. List the components through which the collector current flows.

B. What causes the collector current to flow?
84 Chapter 3 = Introduction to the Transistor

**Answers**

A. The resistor $R_C$, the transistor, and the battery.

B. Base current. (Collector current doesn’t flow unless base current is flowing.)

16 It is a property of the transistor that the ratio of collector current to base current is constant. The collector current is always much larger than the base current. The ratio of the two currents is called the current gain of the transistor and is represented by the symbol $\beta$, or beta. Typical values of $\beta$ range from 10 to 300.

**Questions**

A. What is the ratio of collector current to base current called?

B. What is the symbol used to represent this?

C. Which is larger — base or collector current?

D. Look back at the circuit in problem 13. Will current be greater in $R_B$ or in $R_C$?

**Answers**

A. Current gain

B. $\beta$

C. Collector current is larger.

D. The current is greater in $R_C$, because it is the collector current.

**Note** The $\beta$ introduced here is referred to in manufacturers’ specification sheets as $h_{FE}$. Technically it is referred to as the static or DC $\beta$. For the purposes of this chapter, it is called $\beta$. Discussions on transistor parameters in general, which are well covered in many textbooks, will not be covered here.
The mathematical formula for current gain is as follows:

\[ \beta = \frac{I_C}{I_B} \]

where:

- \( I_B \) = base current
- \( I_C \) = collector current

The equation for \( \beta \) can be rearranged to give \( I_C = \beta I_B \). From this, you can see that if no base current flows, no collector current flows. Also, if more base current flows, more collector current flows. This is why it’s said that the “base current controls the collector current.”

**Question**

Suppose the base current is 1 mA and the collector current is 150 mA. What is the current gain of the transistor?

**Answer**

150

Current gain is a physical property of transistors. You can find its value in the manufacturers’ published data sheets, or you can determine it by experimenting.

In general, \( \beta \) is a different number from one transistor part number to the next, but transistors with the same part number have \( \beta \) values within a narrow range of each other.

One of the most frequently performed calculations in transistor work is to determine the values of either collector or base current, when \( \beta \) and the other current are known.

For example, suppose a transistor has 500 mA of collector current flowing and you know it has a \( \beta \) value of 100. Find the base current. To do this, use the following formula:

\[ \beta = \frac{I_C}{I_B} \]

\[ I_B = \frac{I_C}{\beta} = \frac{500 \text{ mA}}{100} = 5 \text{ mA} \]
Questions

Calculate the following values:

A. \( I_C = 2 \text{ A}, \beta = 20 \). Find \( I_B \).

B. \( I_B = 1 \text{ mA}, \beta = 100 \). Find \( I_C \).

C. \( I_B = 10 \mu\text{A}, \beta = 250 \). Find \( I_C \).

D. \( I_B = 0.1 \text{ mA}, I_C = 7.5 \text{ mA} \). Find \( \beta \).

Answers

A. 0.1 A, or 100 mA

B. 100 mA

C. 2500 \( \mu\text{A} \), or 2.5 mA

D. 75

This problem serves as a summary of the first part of this chapter. You should be able to answer all these questions. Use a separate sheet of paper for your drawing and calculations.

Questions

A. Draw a transistor circuit utilizing an NPN transistor, a base resistor, a collector resistor, and one battery to supply both base and collector currents. Show the paths of \( I_B \) and \( I_C \).

B. Which current controls the other?

C. Which is the larger current, \( I_B \) or \( I_C \)?

D. \( I_B = 6 \mu\text{A}, \beta = 250 \). Find \( I_C \).

E. \( I_C = 300 \mu\text{A}, \Omega = 50 \). Find \( I_B \).

Answers

A. See Figure 3-17 and Figure 3-18.

B. \( I_B \) (base current) controls \( I_C \) (collector current).

C. \( I_C \)
D. 1.5 mA
E. 6 mA

The Transistor Experiment

The objective of the following experiment is to find $\beta$ of a particular transistor by measuring several values of base current with the corresponding values of collector current. Next, divide the values of collector current by the values of the base current to determine $\beta$. The value of $\beta$ will be almost the same for all the measured values of current. This demonstrates that $\beta$ is a constant for a transistor.

While the circuit is set up, measure the collector voltage for each current value. This demonstrates (experimentally) some points that are covered in future problems. As you perform the experiment, observe how the collector voltage $V_c$ drops toward 0 V as the collector current increases.

If you do not have the facilities for setting up the circuit and measuring the values, just read through the experiment. If you do have the facilities, you will need the following equipment and supplies.

- One 9 V transistor radio battery (or a lab power supply).
- One multimeter set to measure current on a scale that will measure at least 100 $\mu$A.
- One multimeter set to measure current on a scale that will measure at least 10 mA.
- One multimeter set to measure voltage, on a scale that will measure at least 10 V.
- One resistor substitution box, or a 1 M$\Omega$ potentiometer, or assorted resistors with the values listed in the following table. If you use a potentiometer, you’ll need another multimeter to read its resistance after each adjustment.

<table>
<thead>
<tr>
<th>$R_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M$\Omega$</td>
</tr>
<tr>
<td>680 k$\Omega$</td>
</tr>
<tr>
<td>470</td>
</tr>
<tr>
<td>330</td>
</tr>
</tbody>
</table>
• One 1 kΩ resistor.
• One transistor, preferably NPN.
• One breadboard.

Almost any small commercially available transistor will do for this experiment. The measurements given in this book were obtained using a 2 N3643. If only a PNP is available, then simply reverse the battery voltage and proceed as described.

Set up the circuit shown in Figure 3-19 on the breadboard. Using breadboards allows you to easily connect components in a circuit that you can then disassemble when testing is complete. You can then use the components and breadboard in the construction of your next circuit.
Follow these steps, recording your measurements in the following blank table.

<table>
<thead>
<tr>
<th>$R_B$</th>
<th>$I_B$</th>
<th>$I_C$</th>
<th>$V_C$</th>
<th>$\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Set $R_B$ to its highest value.
2. Measure and record $I_B$.
3. Measure and record $I_C$.
4. Measure and record $V_C$. This voltage is sometimes referred to as the *collector-emitter voltage* ($V_{CE}$), because it is taken across the collector-emitter leads if the emitter is connected to ground or the negative of the power supply.
5. Lower the value of $R_B$ enough to produce a different reading of $I_B$.
7. Lower $R_B$ again and get a new $I_B$.
8. Measure and record the new values for $R_B$, $I_B$, $I_C$, and $V_C$ again.
9. Repeat Steps 7 and 8 until $V_C = 0$ V.
10. Further reductions in the value of $R_B$ will increase $I_B$, but will not affect the values of $I_C$ or $V_C$. 
Chapter 3  ■ Introduction to the Transistor

Check the numbers in your table to make sure you got a consistent pattern. Then compare your measurements with the ones shown in the following table.

<table>
<thead>
<tr>
<th>$R_B$</th>
<th>$I_B$</th>
<th>$I_C$</th>
<th>$V_C$</th>
<th>$\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M$\Omega$</td>
<td>9 $\mu$A</td>
<td>0.9 mA</td>
<td>8.1 volts</td>
<td>100</td>
</tr>
<tr>
<td>680 k$\Omega$</td>
<td>13</td>
<td>1.3</td>
<td>7.7</td>
<td>100</td>
</tr>
<tr>
<td>470</td>
<td>19</td>
<td>1.9</td>
<td>7.1</td>
<td>100</td>
</tr>
<tr>
<td>330</td>
<td>27.3</td>
<td>2.8</td>
<td>6.2</td>
<td>103</td>
</tr>
<tr>
<td>270</td>
<td>33.3</td>
<td>3.3</td>
<td>5.7</td>
<td>99</td>
</tr>
<tr>
<td>220</td>
<td>40</td>
<td>4.1</td>
<td>5.0</td>
<td>103</td>
</tr>
<tr>
<td>200</td>
<td>45</td>
<td>4.5</td>
<td>4.5</td>
<td>100</td>
</tr>
<tr>
<td>180</td>
<td>50</td>
<td>5</td>
<td>4.0</td>
<td>100</td>
</tr>
<tr>
<td>160</td>
<td>56</td>
<td>5.6</td>
<td>3.4</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
<td>6</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>120</td>
<td>75</td>
<td>7.5</td>
<td>1.5</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>82</td>
<td>8.0</td>
<td>1.0</td>
<td>98</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>9</td>
<td>0.3</td>
<td>100</td>
</tr>
</tbody>
</table>

The measurements shown here were obtained by conducting this experiment very carefully. Precision resistors and a commercial 2 N3643 transistor were used. With ordinary $\pm$ 5 percent tolerance resistors and a transistor chosen at random, you could get different results. Don’t worry if your results are not as precise as those listed here.

Calculation of $\beta$ results in values at or very close to 100 for each measurement, which agrees with the manufacturer’s specification of $\beta = 100$.

For each value of $I_B$ and its corresponding value of $I_C$ in your experiment, calculate the value of $\beta$ ($\beta = I_C/I_B$). The values will vary slightly but will be close to an average. (Excessively low and high values of $I_B$ may produce values of $\beta$, which will be quite different. Ignore these for now.) Did you get a consistent $\beta$? Was it close to the manufacturer’s specifications for your transistor?

In the experiment, you measured the voltage level at the collector ($V_C$) and recorded your measurements. Now, examine how to determine the voltage at the collector, when it’s not possible to measure the voltage level.
Use the values shown in the circuit in Figure 3-20 to complete these steps.

1. Determine $I_C$.
2. Determine the voltage drop across the collector resistor $R_C$. Call this $V_R$.
3. Subtract $V_R$ from the supply voltage to calculate the collector voltage.

Here is the first step:

1. To find $I_C$, you must first find $I_B$.

\[
I_B = \frac{10 \text{ V}}{100 \text{ k}\Omega} = 0.1 \text{ mA}
\]

\[
I_C = \beta \times I_B = 50 \times 0.1 \text{ mA} = 5 \text{ mA}
\]

Now, perform the next two steps.

**Questions**

2. $V_R = \underline{\quad}$
3. $V_C = \underline{\quad}$

**Answers**

2. To find $V_R$:

\[
V_R = R_C \times I_C = 1 \text{ k}\Omega \times 5 \text{ mA} = 5 \text{ V}
\]

3. To find $V_C$:

\[
V_C = V_S - V_R = 10 \text{ V} - 5 \text{ V} = 5 \text{ V}
\]
22 Determine parameters for the circuit shown in Figure 3-20, using the value of $\beta = 75$.

**Questions**

Calculate the following:

A. $I_C =$  
B. $V_R =$  
C. $V_C =$

**Answers**

A. $I_B = \frac{10 \text{ V}}{100 \text{ k}\Omega} = 0.1 \text{ mA}$
   
   $I_C = 75 \times 0.1 \text{ mA} = 7.5 \text{ mA}$  

B. $V_R = 1 \text{ k}\Omega \times 7.5 \text{ mA} = 7.5 \text{ V}$  

C. $V_C = 10 \text{ V} - 7.5 \text{ V} = 2.5 \text{ V}$

23 Determine parameters for the same circuit, using the values of $R_B = 250 \text{ k}\Omega$ and $\beta = 75$.

**Questions**

Calculate the following:

A. $I_C =$  
B. $V_R =$  
C. $V_C =$

**Answers**

A. $I_B = \frac{10 \text{ V}}{250 \text{ k}\Omega} = \frac{1}{25} \text{ mA}$
   
   $I_C = 75 \times \frac{1}{25} \text{ mA} = 3 \text{ mA}$  

B. $V_R = 1 \text{ k}\Omega \times 3 \text{ mA} = 3 \text{ V}$  

C. $V_C = 10 \text{ V} - 3 \text{ V} = 7 \text{ V}$
From the preceding problems, you can see that you can set $V_C$ to any value by choosing a transistor with an appropriate value of $\beta$, or by choosing the correct value of $R_B$.

Now, consider the example shown in Figure 3-21. The objective is to find $V_C$. Use the steps outlined in problem 21.

**Questions**

Calculate the following:

A. $I_B = \frac{10 \text{ V}}{100 \, \text{k} \Omega} = 0.1 \text{ mA}$
   
   $I_C = 100 \times 0.1 \text{ mA} = 10 \text{ mA}$

B. $V_R = 1 \, \text{k} \Omega \times 10 \text{ mA} = 10 \text{ V}$

C. $V_C = 10 \text{ V} - 10 \text{ V} = 0 \text{ V}$.
Here, the base current is sufficient to produce a collector voltage of 0 volts and the maximum collector current possible, given the stated values of the collector resistor and supply voltage. This condition is called saturation.

Look at the two circuits shown in Figure 3-22 and compare their voltages at the point labeled $V_C$.

Consider a transistor that has sufficient base current and collector current to set its collector voltage to 0 V. Obviously, this can be compared to a closed mechanical switch. Just as the switch is said to be ON, then the transistor is also said to be “turned on,” or just ON.

**Questions**

A. What can you compare a turned on transistor to?

B. What is the collector voltage of an ON transistor?

**Answers**

A. A closed mechanical switch

B. 0 V
26 Now, compare the circuits shown in Figure 3-23.

![Figure 3-23](image)

Because the base circuit is broken (that is, it is not complete), there is no base current flowing.

**Questions**

A. How much collector current is flowing?

B. What is the collector voltage?

C. What is the voltage at the point $V_C$ in the mechanical switch circuit?

**Answers**

A. None.

B. Because there is no current flowing through the 1 kΩ resistor, there is no voltage drop across it, so the collector is at 10 V.

C. 10 V, because there is no current flowing through the 1 kΩ resistor.

27 From problem 26, it is obvious that a transistor with no collector current is similar to an open mechanical switch. For this reason, a transistor with no collector current and its collector voltage at the supply voltage level is said to be “turned off,” or just OFF.
Question
What are the two main characteristics of an OFF transistor?

Answer
It has no collector current, and the collector voltage is equal to the supply voltage.

28. Now, calculate the following parameters for the circuit in Figure 3-24 and compare the results to the examples in problems 26 and 27. Again, the objective here is to find $V_C$.

Figure 3-24

Questions
A. $I_B = \quad I_C = \quad$
B. $V_R = \quad$
C. $V_C = \quad$

Answers
A. $I_B = \frac{10 \text{ V}}{100 \text{ k}\Omega} = 0.1 \text{ mA}$
\[ I_C = 50 \times 0.1 mA = 5 mA \]
\[ V_R = 1 \Omega \times 5 mA = 5 V \]
\[ V_C = 10 V - 5 V = 5 V \]

**NOTE** The output voltage in this problem is exactly half the supply voltage. This condition is very important in AC electronics and is covered in Chapter 8.

**The Junction Field Effect Transistor**

**Questions**

A. How many terminals does a JFET have, and what are these terminals called?

B. Which terminal has a function similar to the base of a BJT?

**Answer**

A. Three, called the source, drain, and gate.

B. The gate has a control function similar to that of the base of a BJT.

The basic design of a JFET consists of one type of semiconductor material with a channel made of the opposite type of semiconductor material running through it. If the channel is N material, it is called an N-channel JFET; if it is P material, it is called a P-channel. Figure 3-25 shows the basic layout of N and P materials, along with their circuit symbols. Voltage on the gate controls the current flow through the drain and source by controlling
Chapter 3 - Introduction to the Transistor

the effective width of the channel, allowing more or less current to flow. Thus, the voltage on the gate acts to control the drain current, just as the voltage on the base of a BJT acts to control the collector current.

Figure 3-25

Questions

A. Which JFET would use electrons as the primary charge carrier for the drain current?

B. What effect does changing the voltage on the gate have on the operation of the JFET?

Answers

A. N-channel, because N material uses electrons as the majority carrier.
B. It changes the current in the drain. The channel width is controlled electrically by the gate potential.

31 To operate the N-channel JFET, apply a positive voltage to the drain with respect to the source. This allows a current to flow through the channel. If the gate is at 0 V, the drain current is at its largest value for safe operation, and the JFET is in the ON condition. When a negative voltage is applied to the gate, the drain current is reduced. As the gate voltage becomes more negative, the current lessens until cutoff, which occurs when the JFET is in the OFF condition. Figure 3-26 shows a typical biasing circuit for the N-channel JFET. For a P-channel JFET, you must reverse the polarity of the bias supplies.

![Figure 3-26](image)

**Question**

How does the ON-OFF operation of a JFET compare to that of a BJT?

**Answer**

The JFET is ON when there are 0 volts on the gate, whereas you turn the BJT ON by applying a voltage to the base. You turn the JFET OFF by applying a voltage to the gate, and the BJT is OFF when there are 0 volts on the base. The JFET is a “normally ON” device, but the BJT is considered a “normally OFF” device. Therefore you can use the JFET (like the BJT) as a switching device.

32 When the gate to source voltage is at 0 V ($V_{GS} = 0$) for the JFET shown in Figure 3-26, the drain current is at its maximum or saturation value. This means that the N-channel resistance is at its lowest possible value, in the range of 5 to 200 ohms. If $R_D$ is significantly greater than this, the N-channel resistance, $r_{DS}$, is assumed to be negligible.
Questions

A. What switch condition would this represent, and what will be the drain to source voltage \( (V_{DS}) \)?

B. As the gate becomes more negative with respect to the source, the resistance of the N-channel increases until the cutoff point is reached. At this point the resistance of the channel is assumed to be infinite. What condition will this represent, and what will be the drain to source voltage?

C. What does the JFET act like when it is operated between the two extremes of current saturation and current cutoff?

Answers

A. Closed switch, \( V_{DS} = 0 \text{ V} \), or very low value
B. Open switch, \( V_{DS} = V_{DD} \)
C. A variable resistance

Summary

At this point, it’s useful to compare the properties of a mechanical switch with the properties of both types of transistors, as summarized in the following table.

<table>
<thead>
<tr>
<th>SWITCH</th>
<th>BJT</th>
<th>JFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF or open</td>
<td>No current</td>
<td>No collector current</td>
</tr>
<tr>
<td>Full voltage across terminals</td>
<td>Full supply voltage between collector and emitter</td>
<td>Full supply voltage between drain and source</td>
</tr>
<tr>
<td>ON or closed</td>
<td>Full current</td>
<td>Full circuit current</td>
</tr>
<tr>
<td>No voltage across terminals</td>
<td>Collector to emitter voltage is 0 V</td>
<td>Drain to source voltage is 0 V</td>
</tr>
</tbody>
</table>
The terms ON and OFF are used in digital electronics to describe the two transistor conditions you just encountered. Their similarity to a mechanical switch is useful in many electronic circuits. In Chapter 4, you learn about the transistor switch in more detail. This is the first step toward an understanding of digital electronics. In Chapter 8, you examine the operation of the transistor when it is biased at a point falling between the two conditions, ON and OFF. In this mode, the transistor can be viewed as a variable resistance, and utilized as an amplifier.

Self-Test

The questions here test your understanding of the concepts presented in this chapter. Use a separate sheet of paper for your drawings or calculations. Compare your answers with the answers provided following the test.

1. Draw the symbols for an NPN and a PNP bipolar transistor. Label the terminals of each.

2. In Figure 3-27, draw the paths taken by the base and collector currents.

3. What causes the collector current to flow?

4. What is meant by the term current gain? What symbol is used for this? What is its algebraic formula?

Use the circuit in Figure 3-27 to answer questions 5 through 10.

5. Assume that the transistor is made of silicon. Set $R_B = 27 \, k\Omega$ and $V_s = 3 \, V$. Find $I_B$. 

\[ \text{Figure 3-27} \]
102 Chapter 3 ■ Introduction to the Transistor

6. If $R_B = 220 \, \text{k}\Omega$ and $V_S = 10 \, \text{V}$. Find $I_B$.

7. Find $V_O$ when $R_B = 100 \, \text{k}\Omega$, $V_S = 10 \, \text{V}$, $R_C = 1 \, \text{k}\Omega$, and $\beta = 50$.

8. Find $V_O$ when $R_B = 200 \, \text{k}\Omega$, $V_S = 10 \, \text{V}$, $R_C = 1 \, \text{k}\Omega$, and $\beta = 50$.

9. Now use these values to find $V_C$: $R_B = 47 \, \text{k}\Omega$, $V_S = 10 \, \text{V}$, $R_C = 500 \, \text{ohms}$, and $\beta = 65$.

10. Use these values to find $V_O$: $R_B = 68 \, \text{k}\Omega$, $V_S = 10 \, \text{V}$, $R_C = 820 \, \text{ohms}$, and $\beta = 75$.

11. Draw the symbols for the two types of junction field effect transistors and identify the terminals.

12. What controls the flow of current in both a JFET and a BJT?

13. In the JFET common source circuit shown in Figure 3-28, add the correct polarities of the power supplies and draw the current path taken by the drain current.

![Figure 3-28](image)

14. When a base current is required to turn a BJT ON, why is there no gate current for the JFET in the ON state.
15. Answer the following questions for the circuit shown in Figure 3-29.

![Figure 3-29](image)

A. If the switch is at position A, what will the drain current be, and why?

B. If the switch is at position B, and the gate supply voltage is of sufficient value to cause cutoff, what will the drain current be, and why?

C. What is the voltage from the drain to the source for the two switch positions?

**Answers to Self-Test**

If your answers do not agree with those given below, review the problems indicated in parentheses before you go on to the next chapter.

1. See Figure 3-30. (problems 4, 5)
2. See Figure 3-31. (problems 13,15)

![Figure 3.31]

3. Base current. (problem 15)

4. Current gain is the ratio of collector current to base current. It is represented by the symbol $\beta$. $\beta = I_C/I_B$. (problems 16, 17)

5. 

$\begin{align*}
I_B &= (V_S - 0.7) \div R_B = (3V - 0.7V) \div \frac{23k\Omega}{27k\Omega} = 2.3V \\
I_B &= 85\mu A
\end{align*}$

(problems 7)

6. 

$\begin{align*}
I_B &= \frac{10V}{220k\Omega} = 45.45\mu A
\end{align*}$

(problems 7)

7. 5 V (problem 21–24)

8. 7.5 V (problem 21–24)

9. 3.1 V (problem 21–24)

10. 1 V (problem 21–24)

11. See Figure 3-32. (problem 30)

![Figure 3.32]
12. The voltage on the gate controls the flow of drain current, which is similar to the base voltage controlling the collector current in a BJT. (problem 30)

13. See Figure 3.33. (problem 31)

14. The JFET is a high-impedance device and does not draw current from the gate circuit. The BJT is a relatively low-impedance device and does, therefore, require some base current to operate. (problem 29)

15. A. The drain current will be at its maximum value. In this case, it equals $\frac{V_{DD}}{R_D}$ because you can ignore the drop across the JFET. The gate to source voltage is 0 V, which reduces the channel resistance to a very small value close to 0 ohms. (problem 3-32)

B. The drain current now goes to 0 A because the channel resistance is at infinity (very large), which does not allow electrons to flow through the channel.

C. At position A, $V_{DS}$ is approximately 0 V. At position B, $V_{DS} = V_{DD}$. 
Transistors are everywhere. You can’t avoid them as you move through your daily tasks. For example, almost all industrial controls, and even your MP3 player, stereo, and television may use transistors as switches.

In Chapter 3, you saw how a transistor can be turned ON and OFF, similar to a mechanical switch. Computers work with Boolean algebra, which uses only two logic states — TRUE and FALSE. These two states are easily represented electronically by a transistor that is ON or OFF. Therefore, the transistor switch is used extensively in computers. In fact, the logic portions of microprocessors (the brains of computers) consist entirely of transistor switches.

This chapter introduces the transistor’s simple and widespread application—switching, with emphasis on the bipolar junction transistor (BJT).

When you complete this chapter, you will be able to do the following:

- Calculate the base resistance, which turns a transistor ON and OFF.
- Explain how one transistor will turn another ON and OFF.
- Calculate various currents and resistances in simple transistor switching circuits.
- Calculate various resistances and currents in switching circuits, which contain two transistors.
- Compare the switching action of a junction field effect transistor (JFET) to a BJT.
**Turning the Transistor on**

1. Start by examining how to turn a transistor ON by using the simple circuit shown in Figure 4-1. In Chapter 3, $R_B$ was given, and you had to find the value of collector current and voltages. Now, do the reverse. Start with the current through $R_C$ and find the value of $R_B$ that will turn the transistor ON and permit the collector current to flow.

![Figure 4-1](image)

**Question**

What current values do you have to know in order to find $R_B$?

**Answer**

The base and collector currents

2. In this problem circuit, a lamp can be substituted for the collector resistor. In this case, $R_C$ (the resistance of the lamp) is referred to as the load, and $I_C$ (the current through the lamp) is called the load current.

**Questions**

A. Is load current equivalent to base or collector current?

B. What is the path taken by the collector current discussed in problem 1? Draw this path on the circuit.
Answers

A. Collector current

B. See Figure 4-2. In this figure, note that the resistor symbol has been replaced by the symbol for an incandescent lamp.

![Figure 4-2](image)

3 For the transistor switch to perform effectively as a CLOSED switch, its collector voltage must be at the same voltage as its emitter voltage. In this condition, the transistor is said to be turned ON.

Questions

A. What is the collector voltage when the transistor is turned ON?

B. What other component does an ON transistor resemble?

Answers

A. The same as the emitter voltage, which, in this circuit, is 0 volts

B. A closed mechanical switch

**NOTE** In actual practice, there is a very small voltage drop across the transistor from the collector to the emitter. This is really a saturation voltage and is the smallest voltage drop that can occur across a transistor when it is ON as “hard” as possible. The discussions in this chapter consider this voltage drop to be a negligible value and, therefore, the collector voltage is said to be 0 V. For a quality switching transistor, this is a safe assumption.
The circuit in Figure 4-3 shows a lamp with a resistance of 240 ohms in place of $R_C$.

\[
24 \text{ V} \quad 240 \Omega
\]

This figure shows the supply voltage and the collector resistance. Given these two values, using Ohm’s law, you can calculate the load current (also called the \textit{collector current}) as follows:

\[
I_L = I_C = \frac{V_S}{R_C} = \frac{24 \text{ V}}{240 \text{ ohms}} = 100 \text{ mA}
\]

Thus, 100 mA of collector current must flow through the transistor to fully illuminate the lamp. As you learned in Chapter 3, collector current will not flow unless base current is flowing.

\textbf{Questions}

A. Why do you need base current?

B. How can you make base current flow?

\textbf{Answers}

A. To enable collector current to flow, so that the lamp will light up
B. By closing the mechanical switch in the base circuit

You can calculate the amount of base current flowing. Assume that $\beta = 100$. (Normally, you would look this up in the manufacturer’s datasheet for the transistor you are using.)
Questions

A. What is the value of the base current $I_B$?

\[ I_B = \frac{I_C}{\beta} = \frac{100 \text{ mA}}{100} = 1 \text{ mA} \]

6. The base current flows in the direction shown in Figure 4-4. Base current flows through the base-emitter junction of the transistor as it does in a forward-biased diode.

![Figure 4-4](image)

Questions

A. What is the voltage drop across the base-emitter diode?

B. What is the voltage drop across $R_B$?

Answers

A. 0.7 V, because it is a silicon transistor
B. 24 V if the 0.7 is ignored; 23.3 V if it is not

7. The next step is to calculate $R_B$. The current flowing through $R_B$ is the base current $I_B$, and you determined the voltage across it in problem 6.
Chapter 4  The Transistor Switch

Question

Calculate $R_B$.

Answer

$$R_B = \frac{23.3 \text{ V}}{1 \text{ mA}} = 23,300 \text{ ohms}$$

The final circuit, including the calculated current and resistance values, is shown in Figure 4-5.

![Figure 4-5](image)

Questions

A. Calculate $I_B$. 

8 Use the following steps to calculate the values of $I_B$ and $R_B$ needed to turn a transistor ON:

1. Determine the required collector current.
2. Determine the value of $\beta$.
3. Calculate the required value of $I_B$ from the results of steps 1 and 2.
4. Calculate the required value of $R_B$.
5. Draw the final circuit.

Now, assume that $V_S = 28 \text{ V}$, that you are using a lamp requiring 50 mA of current, and that $\beta = 75$. 

A. Calculate $I_B$. 

B. Determine $R_B$.

**Answers**

A. The collector current and $\beta$ were given. Thus:

\[
I_B = \frac{I_C}{\beta} = \frac{50 \text{ mA}}{75} = 0.667 \text{ mA}
\]

B. $R_B = \frac{28 \text{ V}}{0.667 \text{ mA}} = 42 \text{ k}\Omega$

This calculation ignores $V_{BE}$.

9 Now, assume that $V_s = 9 \text{ V}$, that you are using a lamp requiring 50 mA of current, and that $\beta = 75$.

**Question**

Calculate $R_B$.

**Answer**

$R_B = 31.1 \text{ k}\Omega$

In this calculation, $V_{BE}$ is included.

10 In practice, if the supply voltage is much larger than the 0.7 V drop across the base-emitter junction, you can simplify your calculations by ignoring the 0.7 V drop and assume that all the supply voltage appears across the base resistor $R_B$. (Most resistors are only accurate to within $\pm 5$ percent of their stated value anyway.) If the supply voltage is less than 10 volts, however, you shouldn’t ignore the 0.7 V drop across the base-emitter junction.

**Questions**

Calculate $R_B$ for the following problems, ignoring the voltage drop across the base-emitter junction, if appropriate.

A. A 10 V lamp that draws 10 mA. $\beta = 100$. 

---

Turning the Transistor on 113
Chapter 4  The Transistor Switch

B. A 5 V lamp that draws 100 mA. $\beta = 50$.

---

**Answers**

| A. $I_B = \frac{10 \text{ mA}}{100} = 0.1 \text{ mA}$ |
| $R_B = \frac{10 \text{ V}}{0.1 \text{ mA}} = 100 \text{ k}\Omega$ |
| B. $I_B = \frac{100 \text{ mA}}{50} = 2 \text{ mA}$ |
| $R_B = \frac{(5 \text{ V} - 0.7 \text{ V})}{2 \text{ mA}} = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k}\Omega$ |

---

**Turning the Transistor off**

Up to now, you have concentrated on turning the transistor ON, thus making it act like a closed mechanical switch. Now you focus on turning it OFF, thus making it act like an open mechanical switch. If the transistor is OFF, no current flows through the load (that is, no collector current flows).

**Questions**

A. When a switch is open, are the two terminals at different voltages, or at the same voltage?

B. When a switch is open, does current flow?

C. For a transistor to turn OFF and act like an open switch, how much base current is needed?
Answers
A. At different voltages, the supply voltage and ground voltage.
B. No.
C. The transistor is OFF when there is no base current.

12 You can be sure that there is no base current in the circuit shown in Figure 4-6 by opening the mechanical switch.

![Figure 4-6](image)

To ensure that the transistor remains off when the base is not connected to the supply voltage you add a resistor (labeled \( R_2 \) in Figure 4-7) to the circuit. The base of the transistor is connected to ground or 0 volts through this resistor. Therefore, no base current can possibly flow.

![Figure 4-7](image)

Questions
A. Why will current not flow from the supply voltage to the base-emitter junction?
116 Chapter 4  The Transistor Switch

B. How much current flows from collector to base?

C. Why will current not flow from collector to base through R₂ ground?

D. Why is the transistor base at 0 volts when R₂ is installed?

Answers

A. There is no current path from the supply voltage through the base-emitter junction. Thus, there is no base current flowing.

B. None at all.

C. The internal construction of the transistor prevents this, because the collector-to-base junction is basically a reverse-biased diode.

D. Because there is no current through R₂, there is no voltage drop across R₂ and, therefore, the transistor base is at ground (0 volts).

13 Because no current is flowing through R₂, you can use a wide range of resistance values. In practice, the values you find for R₂ will be between 1 kΩ and 1 MΩ.

Question

Which of the following resistor values would you use to keep a transistor turned off? 1 ohm, 2 kΩ, 10 kΩ, 20 kΩ, 50 kΩ, 100 kΩ, 250 kΩ, 500 kΩ.

Answer

They would all be suitable except the 1 ohm, because the rest are all above 1 kΩ and below 1 MΩ.

14 Figure 4-8 shows a circuit using both R₁ and R₂. Note that the circuit includes a two-position switch that you can use to turn the transistor ON or OFF.
Why Transistors are Used as Switches 117

Questions
A. As shown in Figure 4-8, is the transistor ON or OFF?

B. Which position, A or B, will cause the collector current to be 0 amperes?

Answers
A. ON — the base-to-emitter diode is forward biased. Therefore, base current can flow.

B. Position B — the base is tied to ground. Therefore, no base current can flow, and the transistor is OFF.

Why Transistors are Used as Switches

You can use the transistor as a switch (as you saw in the previous problems) to perform simple operations such as turning a lamp current on and off. Although often used between a mechanical switch and a lamp, there are other uses for the transistor.

Following are a few other examples that demonstrate the advantages of using a transistor in a circuit as a switch:

- Example 1 — Suppose you have to put a lamp in a dangerous environment, such as a radioactive chamber. Obviously, the switch to operate the
lamp must be placed somewhere safe. You can simply use a switch outside the chamber to turn the transistor switch ON or OFF.

- **Example 2** — If a switch controls equipment that requires large amounts of current, then that current must flow through the wires that run between the switch and the lamp. Because the transistor switch can be turned ON or OFF using low voltages and currents, you can connect a mechanical switch to the transistor switch using small, low-voltage wire and, thereby, control the larger current flow. If the mechanical switch is any distance from the equipment you’re controlling, using low-voltage wire will save you time and money.

- **Example 3** — A major problem with switching high current in wires is that the current induces interference in adjacent wires. This can be disastrous in communications equipment such as radio transceivers. To avoid this, you can use a transistor to control the larger current from a remote location, reducing the current needed at the switch that is located in the radio transceiver.

- **Example 4** — In mobile devices (such as a radio controlled airplane), using transistor switches minimizes the power, weight, and bulk required.

**Question**

What features mentioned in these examples make using transistors as switches desirable?

**Answer**

The switching action of a transistor can be directly controlled by an electrical signal, as well as by a mechanical switch in the base circuit. This provides a lot of flexibility to the design and allows for simple electrical control. Other factors include safety, reduction of interference, remote switching control, and lower design costs.

The following examples of transistor switching demonstrate some other reasons for using transistors:

- **Example 1** — You can control the ON and OFF times of a transistor very accurately, while mechanical devices are not very accurate. This is most important in applications such as photography, where it is necessary to expose a film or illuminate an object for a precise period of time. In these types of uses, transistors are much more accurate and controllable than any other device.
Why Transistors are Used as Switches

- **Example 2** — A transistor can be switched ON and OFF millions of times a second, and will last for many years. In fact, transistors are one of the longest lasting and most reliable components known, while mechanical switches usually fail after a few thousand operations.

- **Example 3** — The signals generated by most industrial control devices are digital. These control signals can be simply a high or low voltage, which is ideally suited to turning transistor switches ON or OFF.

- **Example 4** — Modern manufacturing techniques allow for the miniaturization of transistors to such a great extent that many of them (even hundreds of millions) can be fabricated into a single silicon chip. Silicon chips on which transistors (and other electronic components) have been fabricated are called integrated circuits (ICs). ICs are little flat, black plastic components built into almost every mass-produced electronic device, and are the reason that electronic devices continue to get smaller and lighter.

**Question**

What other features, besides the ones mentioned in the previous problem, are demonstrated in the examples given here?

**Answer**

Transistors can be accurately controlled, have high-speed operation, are reliable, have a long life, are very small, have low power consumption, can be manufactured in large numbers at low cost, and are extremely small.

17 At this point, consider the idea of using one transistor to turn another one ON and OFF, and using the second transistor to operate a lamp or other load. (This idea is explored in the next section of this chapter.)

If you have to switch many high current loads, then you can use one switch that controls several transistors simultaneously.

**Questions**

A. With the extra switches added, will the current that flows through the main switch be more or less than the current that flows through the load?

B. What effect do you think the extra transistor will have on the following?
Chapter 4 – The Transistor Switch

1. Safety

2. Convenience to the operator

3. Efficiency and smoothness of operation

**Answers**

A. Less current will flow through the main switch than through the load.

B. 1. It increases safety and allows the operator to stay isolated from dangerous situations.
   2. Switches can be placed conveniently close together on a panel, or in the best place for an operator, rather than the switch position dictating operator position.
   3. One switch can start many things, as in a master lighting panel in a television studio or theater.

This problem reviews your understanding of the concepts presented in problems 15, 16, and 17.

**Questions**

Indicate which of the following are good reasons for using a transistor as a switch:

A. To switch equipment in a dangerous or inaccessible area on and off
B. To switch very low currents or voltages
C. To lessen the electrical noise that might be introduced into communication and other circuits
D. To increase the number of control switches
E. To use a faster, more reliable device than a mechanical switch

**Answers**

A, C, and E.
Many types of electronic circuits contain multiple switching transistors. In this type of circuit, one transistor is used to switch others ON and OFF. To illustrate how this works, again consider the lamp as the load and the mechanical switch as the actuating element. Figure 4-9 shows a circuit that uses two transistors to turn a lamp on or off.

When the switch is in position A, Q1’s base-emitter junction is forward biased. Therefore, base current (I_{B1}) flows through R1 and through Q1’s base-emitter diode, turning the transistor ON. This causes the collector current (I_{C1}) to flow through Q1 to ground, and the collector voltage drops to 0 volts, just as if Q1 was a closed switch. Because the base of Q2 is connected to the collector of Q1, the voltage on the base of Q2 also drops to 0 volts. This ensures that Q2 is turned OFF and the lamp remains unlit.

Now, flip the switch to position B, as shown in Figure 4-10. The base of Q1 is tied to ground, or 0 volts, turning Q1 OFF. Therefore, no collector current can flow through Q1. A positive voltage is applied to the base of Q2 and Q2’s emitter-base junction is forward biased. This allows current to flow through R3 and the emitter-base junction of Q2, which turns Q2 ON, allowing collector current (I_{C2}) to flow and the lamp is illuminated.

Now that you have read the descriptions of how the circuit works, try to answer the following questions. First assume the switch is in position A, as shown in Figure 4-9.
122 Chapter 4 • The Transistor Switch

Questions

A. What effect does $I_{B1}$ have on transistor $Q_1$?

B. What effect does turning $Q_1$ ON have on
   1. Collector current $I_{C1}$?
   2. Collector voltage $V_{C1}$?

C. What effect does the change to $V_{C1}$ covered in the previous question have on
   1. The base voltage of $Q_2$?
   2. Transistor $Q_2$ (that is, is it ON or OFF)?

D. Where does the current through $R_3$ go?

E. In this circuit is the lamp on or off?

Answers

A. $I_{B1}$, along with a portion of $V_S$ (0.7 volts if the transistor is silicon), turns $Q_1$ ON.

B. (1) $I_{C1}$ flows; (2) $V_{C1}$ drops to 0 V.

C. (1) base of $Q_2$ drops to 0 V; (2) $Q_2$ is OFF.

D. $I_{C1}$ flows through $Q_1$ to ground.

E. Off.

Now, assume the switch is in the B position, as shown in Figure 4-10, and answer these questions.
Questions

A. How much base current $I_{B1}$ flows into $Q_1$?
B. Is $Q_1$ ON or OFF?
C. What current flows through $R_3$?
D. Is $Q_2$ ON or OFF?
E. Is the lamp on or off?

Answers

A. None
B. OFF
C. $I_{B2}$
D. ON
E. On

Refer back to the circuit in Figure 4-9 and 4-10. Now, answer these questions assuming the supply voltage is 10 V.

Questions

A. Is the current through $R_3$ ever divided between $Q_1$ and $Q_2$? Explain.

B. What is the collector voltage of $Q_2$ with the switch in each position?

C. What is the collector voltage of $Q_1$ with the switch in each position?

Answers

A. No. If $Q_1$ is ON, all the current flows through it to ground as collector current. If $Q_1$ is OFF, all the current flows through the base of $Q_2$ as base current.
**The Transistor Switch**

B. In position A, 10 volts because it is OFF.
   In position B, 0 volts because it is ON.

C. In position A, 0 volts because it is ON.
   In position B, the collector voltage of Q₁ equals the voltage drop across
   the forward-biased base-emitter junction of Q₂, because the base of
   Q₂ is in parallel with the collector of Q₁. The voltage drop across
   the forward-biased base-emitter junction will not rise to 10 V, but can only
   rise to 0.7 V if Q₂ is made of silicon.

Now calculate the values of R₁, R₂, and R₃ for this circuit. The process
is similar to the one you used before, but you have to expand it to deal with
the second transistor. Similar to the steps you used in problem 8. Follow these
steps to calculate R₁, R₂, and R₃:

1. Determine the load current \( I_{C2} \).
2. Determine \( \beta \) for Q₂. Call this \( \beta_2 \).
3. Calculate \( I_{B2} \) for Q₂. Use \( I_{B2} = \frac{I_{C2}}{\beta_2} \).
4. Calculate \( R_3 \) to provide this base current. Use \( R_3 = \frac{V_s}{I_{B2}} \).
5. \( R_3 \) is also the load for Q₁ when Q₁ is ON. Therefore, the collector current
   for Q₁ (\( I_{C1} \)) will have the same value as the base current for Q₂, as calculated
   in step 3.
6. Determine \( \beta_1 \), the \( \beta \) for Q₁.
7. Calculate the base current for Q₁. Use \( I_{B1} = \frac{I_{C1}}{\beta_1} \).
8. Find \( R_1 \). Use \( R_1 = \frac{V_s}{I_{B1}} \).
9. Choose \( R_2 \). For convenience, let \( R_2 = R_1 \).

Continue to work with the same circuit shown in Figure 4-11. Use the
following values:

![Figure 4-11](image-url)
Why Transistors are Used as Switches

A 10-volt lamp that draws 1 ampere; therefore $V_S = 10$ volts, $I_{C2} = 1$ A.

$\beta_2 = 20$, $\beta_1 = 100$

Ignore any voltage drops across the transistors.

**Questions**

Calculate the following:

A. Find $I_{B2}$ as in step 3.

$$I_{B2} = \underline{}$$

B. Find $R_3$ as in step 4.

$$R_3 = \underline{}$$

C. Calculate the load current for $Q_1$ when it is ON as shown in step 5.

$$I_{C1} = \underline{}$$

D. Find the base current for $Q_1$.

$$I_{B1} = \underline{}$$

E. Find $R_1$ as in step 8.

$$R_1 = \underline{}$$

F. Choose a suitable value for $R_2$.

$$R_2 = \underline{}$$

**Answers**

The following answers correspond to the steps.

A. 1. $I_{C2}$ is given as 1 A.

2. $\beta_2 = 20$ (given). This is a typical value for a transistor that would handle 1 A.

3. $I_{B2} = \frac{1}{20} = 50$ mA

B. 4. $R_3 = \frac{10 \text{ Volts}}{50 \text{ mA}} = 200 \Omega$

Note that the 0.7 V base-emitter drop has been ignored.

C. 5. $I_{C1} = I_{B2} = 50$ mA

D. 6. $\beta_1 = 100$
7. \( I_{B1} = \frac{50 \text{ mA}}{100} = 0.5 \text{ mA} \)

E. \( R_1 = \frac{10 \text{ V}}{0.5 \text{ mA}} = 20 \text{ k}\Omega \)
   Again, the 0.7 V drop is ignored.

F. 9. For convenience choose a value for \( R_2 \) that is the same as \( R_1 \), or 20 kΩ. This reduces the number of different components in the circuit. The fewer different components you have in a circuit, the less components you have to keep in your parts bin. You could, of course, choose any value between 1 kΩ and 1 MΩ.

23. Following the same procedure, and using the same circuit shown in Figure 4-11, work through this example. Assume that you are using a 28-volt lamp that draws 560 mA, and that \( \beta_2 = 10 \) and \( \beta_1 = 100 \).

Questions
Calculate the following:

A. \( I_{B2} = \) 
B. \( R_3 = \) 
C. \( I_{C1} = \) 
D. \( I_{B1} = \) 
E. \( R_1 = \) 
F. \( R_2 = \) 

Answers
A. 56 mA
B. 500 ohms
C. 56 mA
D. 0.56 mA
E. 50 kΩ
F. 50 kΩ by choice
The Three-Transistor Switch

The circuit shown in Figure 4-12 uses three transistors to switch a load on and off. In this circuit, Q₁ is used to turn Q₂ ON and OFF, and Q₂ is used to turn Q₃ ON and OFF. The calculations are similar to those you performed in the last few problems, but a few additional steps are required to deal with the third transistor. Use this circuit diagram to determine the answers to the following questions.

Figure 4-12

Questions

If the switch is in position A:
A. Is Q₁ ON or OFF?

B. Is Q₂ ON or OFF?

C. Where is current through R₄ flowing?

D. Is Q₃ ON or OFF?

Answers
A. ON
B. OFF
C. Into the base of Q₃
D. ON

Now use the same circuit as in problem 24.

Questions

If the switch is in position B:
A. Is Q₁ ON or OFF?
B. Is Q₂ ON or OFF?
C. Where is the current through R₄ flowing?
D. Is Q₃ ON or OFF?
E. Which switch position turns the lamp on?
F. How do the on/off positions for the switch in the three-transistor switch differ from the on/off positions for the switch in the two-transistor switch circuit?

Answers
A. OFF.
B. ON.
C. Through Q₂ to ground.
D. OFF.
E. Position A.
F. The positions are opposite. Therefore, if a circuit controls lamps with two transistors, and another circuit controls lamps with three transistors, flipping the switch that controls both circuits would change which lamps (or which other loads) are on.
Work through this example using the same equations you used for the two-transistor switch in problem 22. The steps are similar, but with a few added steps, as shown here:

1. Find the load current. This is often given.
2. Determine the current gain of $Q_3$. This is $\beta_3$ and usually it is a given value.
3. Calculate $I_{B3}$. Use $I_{B3} = I_{C3}/\beta_3$.
4. Calculate $R_4$. Use $R_4 = V_s/I_{B3}$.
5. Assume $I_{C2} = I_{B3}$.
6. Find $\beta_2$. Again this is a given value.
7. Calculate $I_{B2}$. Use $I_{B2} = I_{C2}/\beta_2$.
9. Assume $I_{C1} = I_{B2}$.
10. Find $\beta_1$.
11. Calculate $I_{B1}$. Use $I_{B1} = I_{C1}/\beta_1$.
12. Calculate $R_1$. Use $R_1 = V_s/I_{B1}$.
13. Choose $R_2$.

For this example, use a 10-volt lamp that draws 10 amperes. Assume the $\beta$s of the transistors are given in the manufacturer’s datasheets as $\beta_1 = 100$, $\beta_2 = 50$, and $\beta_3 = 20$. Now work through the steps, checking the answers for each step as you complete it.

**Questions**

Calculate the following:

A. $I_{B3} =$ ______
B. $R_4 =$ ______
C. $I_{B2} =$ ______
D. $R_3 =$ ______
E. $I_{B1} =$ ______
F. $R_1 =$ ______
G. $R_2 =$ ______

**Answers**

The answers here correspond to the steps.
A. 1. The load current is given as 10 A.
   2. $\beta_3$ is given as 20.
   3. $I_{B3} = \frac{I_{C3}}{\beta_3} = \frac{10 \text{ A}}{20} = 0.5 \text{ A} = 500 \text{ mA}$

B. 4. $R_4 = \frac{10 \text{ volts}}{500 \text{ mA}} = 20 \text{ ohms}$

C. 5. $I_{C2} = I_{B3} = 500 \text{ mA}$
   6. $\beta_2$ is given as 50.
   7. $I_{B2} = \frac{I_{C2}}{\beta_2} = \frac{500 \text{ mA}}{50} = 10 \text{ mA}$

D. 8. $R_3 = \frac{10 \text{ V}}{10 \text{ mA}} = 1 \text{ k}\Omega$

E. 9. $I_{C1} = I_{B2} = 10 \text{ mA}$
   10. $\beta_1$ is given as 100.
   11. $I_{B1} = \frac{I_{C1}}{\beta_1} = \frac{10 \text{ mA}}{100} = 0.1 \text{ mA}$

F. 12. $R_1 = \frac{10 \text{ V}}{0.1 \text{ mA}} = 100 \text{ k}\Omega$

G. 13. $R_2$ can be chosen to be $100 \text{ k}\Omega$ also.

27 Determine the values in the same circuit for a 75-volt lamp that draws 6 A. Assume that $\beta_3 = 30$, $\beta_2 = 100$, and $\beta_1 = 120$.

Questions
Calculate the following values using the steps in problem 26:
Alternative Base Switching

A. \( I_{B3} = \) ____________
B. \( R_4 = \) ____________
C. \( I_{B2} = \) ____________
D. \( R_3 = \) ____________
E. \( I_{B1} = \) ____________
F. \( R_1 = \) ____________
G. \( R_2 = \) ____________

**Answers**

A. 200 mA
B. 375 Ω
C. 2 mA
D. 37.5 kΩ
E. 16.7 µA
F. 4.5 MΩ
G. Choose \( R_2 = 1 \) MΩ

**Alternative Base Switching**

In the examples of transistor switching, the actual switching was performed using a small mechanical switch placed in the base circuit of the first transistor. This switch has three terminals, and switches from position A to position B. (This is a single pole double throw switch.) This switch does not have a definite ON or OFF position as does a simple ON-OFF switch.

**Question**

Why couldn’t a simple ON-OFF switch with only two terminals have been used with these examples?
**Chapter 4 = The Transistor Switch**

**Answer**

An ON-OFF switch is either open or closed, and cannot switch between position A and position B, as shown earlier in Figure 4-12.

29. If you connect $R_1$, $R_2$, and a switch together as shown in Figure 4-13, you can use a simple ON-OFF switch with only two terminals. (This is a single pole single throw switch.)

![Figure 4-13](image)

**Questions**

A. When the switch is open, is $Q_1$ ON or OFF?

B. When the switch is closed, is the lamp on or off?

**Answers**

A. OFF
B. On

30. When the switch is closed, current flows through $R_1$. However, at point A in Figure 4-13, the current divides into two paths. One path is the base current $I_B$, and the other is marked $I_2$. 
Question

How could you calculate the total current $I_1$?

Answer

$I_1 = I_B + I_2$

31. The problem now is to choose the values of both $R_1$ and $R_2$ so that when the current divides, there will be sufficient base current to turn $Q_1$ ON.

Question

Consider this simple example. Assume the load is a 10-volt lamp that needs 100 mA of current, and $\beta = 100$. Calculate the base current required.

$I_B = \underline{}$

Answer

$I_B = \frac{100 \text{ mA}}{100} = 1 \text{ mA}$

32. After the current $I_1$ flows through $R_1$, it must divide, and 1 mA of it becomes $I_B$. The remainder of the current is $I_2$. The difficulty at this point is that there is no unique value for either $I_1$ or $I_2$. In other words, you could assign them almost any value. The only restriction is that both must permit 1 mA of current to flow into the base of $Q_1$.

You must make an arbitrary choice for these two values. Based on practical experience, it is common to set $I_2$ to be 10 times greater than $I_B$. This split makes the circuits work reliably, and keeps the calculations easy:

$I_2 = 10I_B$
$I_1 = 11I_B$

Question

In problem 31 you determined that $I_B = 1 \text{ mA}$. What is the value of $I_2$?

Answer

$I_2 = 10 \text{ mA}$
33 Now it is possible to calculate the value of $R_2$. The voltage across $R_2$ is the same as the voltage drop across the base-emitter junction of $Q_1$. Assume that the circuit uses a silicon transistor, so this voltage is 0.7 V.

**Questions**

A. What is the value of $R_2$?

B. What is the value $R_1$?

**Answers**

A. $R_2 = \frac{0.7 \text{ V}}{10 \text{ mA}} = 70 \text{ ohms}$

B. $R_2 = \frac{(10 \text{ V} - 0.7 \text{ V})}{11 \text{ mA}} = \frac{9.3 \text{ V}}{11 \text{ mA}} = 800 \text{ ohms}$ (approximately)

You can ignore the 0.7 V in this case, which would give $R_1 = 910 \text{ ohms}$.

34 The resistor values you calculated in problem 33 ensure that the transistor turns ON, and that the 100 mA current ($I_C$) you need to illuminate the lamp flows through the lamp and the transistor. The labeled circuit is shown in Figure 4-14.

![Figure 4-14](image-url)
Questions

For each of the following lamps, perform the same calculations you used in the last few problems to find the values of $R_1$ and $R_2$.

A. A 28-volt lamp that draws 56 mA. $\beta = 100$

B. A 12-volt lamp that draws 140 mA. $\beta = 50$

Answers

A. $I_B = \frac{56 \text{ mA}}{100} = 0.56 \text{ mA}$

$I_2 = 5.6 \text{ mA}$

$R_2 = \frac{0.7 \text{ V}}{5.6 \text{ mA}} = 125 \text{ ohms}$

$R_1 = \frac{28 \text{ V}}{6.16 \text{ mA}} = 4.5 \text{ k}\Omega$

B. $R_2 = 25 \text{ ohms}$

$R_1 = 400 \text{ ohms}$

The arbitrary decision to make the value of $I_2$ 10 times the value of $I_B$ is obviously subject to considerable discussion, doubt, and disagreement. Transistors are not exact devices; they are not carbon copies of each other. In general, any transistor of the same type will have a different $\beta$ from any other because of the variance in tolerances found in component manufacturing. This leads to a degree of inexactness in designing and analyzing transistor circuits. The truth is that if you follow exact mathematical procedures, it will complicate your life. In practice, a few “rules of thumb” have been developed to help you make the necessary assumptions. These rules lead to simple equations that provide workable values for components that you can use in designing circuits.

The choice of $I_2 = 10I_B$ is one such rule of thumb. Is it the only choice that will work? Of course not. Almost any value of $I_2$ that is at least 5 times larger
than $I_B$ will work. Choosing 10 times the value is a good option for three reasons:
- It is a good practical choice. It will always work.
- It makes the arithmetic easy.
- It’s not overly complicated, and doesn’t involve unnecessary calculations.

**Question**
In the example from problem 32, $I_B = 1$ mA and $I_2 = 10$ mA. Which of the following values could also work efficiently for $I_2$?

A. 5 mA  
B. 8 mA  
C. 175 mA  
D. 6.738 mA  
E. 1 mA

**Answer**
Choices A, B, and D. Value C is much too high to be a sensible choice, and E is too low.

**36** Before you continue with this chapter, answer the following review questions.

**Questions**
A. Which switches faster, the transistor or the mechanical switch?

B. Which can be more accurately controlled?

C. Which is the easiest to operate remotely?

D. Which is the most reliable?

E. Which has the longest life?
Switching The JFET

The use of the junction field effect transistor (JFET) as a switch is discussed in the next few problems. You may want to review problems 29 through 32 of Chapter 3 where this book introduced the JFET.

The JFET is considered a "normally on" device, which means that with 0 volts applied to the input terminal (called the gate), it is ON and current can flow through the transistor. When you apply a voltage to the gate, the device conducts less current because the resistance of the drain to source channel increases. At some point, as the voltage increases, the value of the resistance in the channel becomes so high that the device "cuts off" the flow of current.

Questions

A. What are the three terminals for a JFET called, and which one controls the operation of the device?
B. What turns the JFET ON and OFF?

Answers

A. Drain, source, and gate, with the gate acting as the control.
B. When the gate voltage is zero (at the same potential as the source), the JFET is ON. When the gate to source voltage difference is high, the JFET is OFF.
The JFET Experiment

The objective of the following experiment is to determine the drain current that will flow when a JFET is fully ON and the gate voltage needed to fully shut the JFET OFF, using the circuit shown in Figure 4-15. You can change the gate voltage (actually, the voltage difference between the gate and the source, or $V_{GS}$) by adjusting the potentiometer, while measuring the resulting current flow through the transistor from drain to source ($I_D$). When the JFET is OFF, $I_D$ is at zero; when the JFET is fully ON, $I_D$ is at its maximum (called $I_{DSS}$).

![Figure 4-15](image)

You will need the following equipment and supplies:

- One 6 V battery pack.
- One 12 V battery pack (or a lab power supply).
- One multimeter set to measure current.
- One multimeter set to measure voltage.
- One JFET.
- One potentiometer. Any value of potentiometer will work. If you have a selection available, use a 10 kΩ potentiometer.
- One breadboard.

If you do not have what you need to set up the circuit and measure the values, just read through the experiment.

Follow these steps to complete the experiment:

1. Set up the circuit shown in Figure 4-15 on the breadboard with the power supply for the drain portion of the circuit set to 12 V.
2. Set the potentiometer to 0 ohms and take a reading of V_{GS} and I_{D} and record the readings in the following table.

<table>
<thead>
<tr>
<th>V_{GS}</th>
<th>I_{D}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Increase the potentiometer resistance and take another set of readings and record them. Repeat this until I_{D} drops to 0 mA.

4. Plot the recorded points on a graph as shown on the right-hand side of Figure 4-15, with I_{D} as the vertical axis and V_{GS} as the horizontal axis. Draw a curve through the points.

With the potentiometer set at point A (0 ohms), the voltage from the gate to the source is zero (V_{GS} = 0). The current that flows between the drain and source terminals of the JFET at this time is at its maximum value, and is called the saturation current (I_{DSS}).

On the graph shown in the right side of Figure 4-15, the saturation point is indicated at A. This graph shows the transfer curve, and is a characteristic curve that is included on JFET datasheets.

**NOTE** If you are using a lab power supply for the drain portion of the circuit, you should have it set to 12 volts. One property of the saturation current is that when V_{GS} is set at zero, and the transistor is fully ON, the current doesn’t drop as long as the value of V_{DS} is above a few volts. If you have an adjustable power supply, you can determine the value of V_{DS} at which I_{D} starts to drop by starting with the power supply set at 12 volts. Watch the value of I_{D} as you lower the power supply voltage until you see I_{D} start to decrease.
**Questions**

Using the transfer curve shown, answer the following:

A. With $V_{GS} = 0$, what is the value of drain current?

B. Why is this value called the drain saturation current?

C. What is the gate to source cutoff voltage for the curve shown?

D. Why is this called a cutoff voltage?

**Answers**

A. 12 mA on the graph.

B. The word saturation is used to indicate that the current is at its maximum.

C. Approximately −4.2 V on the graph.

D. It is termed a cutoff voltage because at this value the drain current goes to 0 A.

Now, look at the circuit shown in Figure 4-16. Assume that the JFET has the transfer characteristic shown by the curve in Figure 4-15.

![Figure 4-16](image)

When the gate is connected to ground, the drain current will be at 12 mA. Assuming that the drain to source resistance is negligible, you can calculate the required value for $R_D$ using the following formula:
The JFET Experiment

\[ R_D = \frac{V_{DD}}{I_{DSS}} \]

If you know the drain to source voltage, then you can include it in the calculation.

\[ R_D = \frac{(V_{DD} - V_{DS})}{I_{DSS}} \]

**Question**

What should the value of \( R_D \) be for the \( I_{DSS} \) shown at Point A in the curve?

**Answer**

\[ R_D = \frac{20 \text{ V}}{12 \text{ mA}} = 1.67 \text{ k}\Omega \]

**NOTE**

You can see from this calculation that \( R_D \) is 19 times greater than \( r_{DS} \). Thus, ignoring \( V_{DS} \) and assuming that \( r_{DS} = 0 \) does not greatly affect the value of \( R_D \). The 1.67 k\( \Omega \) value is only about 5 percent higher than the 1583 ohm value for \( R_D \).

40  For the JFET circuit shown in Figure 4-16, assume that \( V_{DS} = 1 \text{ V} \) when the \( I_D \) is at saturation.

**Questions**

A. What is the required value of \( R_D \)?

B. What is the effective drain to source resistance (\( r_{DS} \)) in this situation?

**Answers**

A. \[ R_D = \frac{(20 \text{ volts} - 1 \text{ volt})}{12 \text{ mA}} = 1583 \text{ ohms} \]

B. \[ r_{DS} = \frac{V_{DS}}{I_{DSS}} = \frac{1 \text{ volt}}{12 \text{ mA}} = 83 \text{ ohms} \]
Chapter 4 = The Transistor Switch

Now, turn the JFET OFF. From the curve shown in Figure 4-15, you can see that a cutoff value of \(-4.2\) V is required. Use a gate to source value of \(-5\) V to ensure that the JFET is in the “hard OFF” state. The purpose of resistor \(R_G\) is to ensure that the gate is connected to ground while you flip the switch between terminals, changing the gate voltage from one level to the other. Use a large value of 1 M\(\Omega\) here to avoid drawing any appreciable current from the gate supply.

**Question**

When the gate is at the \(-5\) V potential, what is the drain current and the resultant output voltage?

**Answer**

\[
I_D = 0\ A \quad \text{and} \quad V_{out} = V_{DS} = 20\ V, \text{which is } V_{DD}
\]

**Summary**

In this chapter, you learned about the transistor switch and how to calculate the resistor values required to use it in a circuit.

- You worked with a lamp as the load example, because this provides an easy visual demonstration of the switching action. All of the circuits shown in this chapter will work when you build them on a breadboard, and the voltage and current measurements will be very close to those in the text.

- You have not yet learned all there is to transistor switching. For example, you haven’t found out how much current a transistor can conduct before it burns out, what maximum voltage a transistor can sustain, or how fast a transistor can switch ON and OFF. You can learn these things from the datasheet for each transistor model, so these are not covered here.

- When you use the JFET as a switch, it will not switch as fast as a BJT, but it does have certain advantages relating to its large input resistance. The JFET does not draw any current from the control circuit in order to operate. Conversely, a BJT will draw current from the control circuit because of its lower input resistance.

**Self-Test**

These questions test your understanding of the concepts introduced in this chapter. Use a separate sheet of paper for your diagrams or calculations. Compare your answers with the answers provided.
For the first three questions, use the circuit shown in Figure 4-17. The objective is to find the value of $R_B$ that will turn the transistor ON. As you may know, resistors are manufactured with "standard values." After you have calculated an exact value, choose the nearest standard resistor value from Appendix D.

1. $R_C = 1\,\Omega$, $\beta = 100$, $R_B = \underline{\underline{\text{}}}$

2. $R_C = 4.7\, k\Omega$, $\beta = 50$. $R_B = \underline{\underline{\text{}}}$

3. $R_C = 22\, k\Omega$, $\beta = 75$. $R_B = \underline{\underline{\text{}}}$

For questions 4–6, use the circuit shown in Figure 4-18. Find the values of $R_3$, $R_2$, and $R_1$ that ensure that $Q_2$ is ON or OFF when the switch is in the corresponding position. Calculate the resistors in the order given. After you have found the exact values, again choose the nearest standard resistor values.

![Figure 4-18](image)

**NOTE** You should be aware that rounding off throughout a problem, or rounding off the final answer, could produce slightly different results.
4. \(R_4 = 100 \text{ ohms}, \beta_1 = 100, \beta_2 = 20.\)
\[
R_3 = \underline{\quad} \quad R_1 = \underline{\quad} \quad R_2 = \underline{\quad}
\]
5. \(R_4 = 10 \text{ ohms}, \beta_1 = 50, \beta_2 = 20.\)
\[
R_3 = \underline{\quad} \quad R_1 = \underline{\quad} \quad R_2 = \underline{\quad}
\]
6. \(R_4 = 250 \text{ ohms}, \beta_1 = 75, \beta_2 = 75.\)
\[
R_3 = \underline{\quad} \quad R_1 = \underline{\quad} \quad R_2 = \underline{\quad}
\]

For questions 7–9, find the values of the resistors in the circuit shown in Figure 4-19 that ensure that \(Q_3\) will be ON or OFF when the switch is in the corresponding position. Then, select the nearest standard resistor values.

For questions 10–12 use the circuit shown in Figure 4-20. Find values for \(R_1\) and \(R_2\) that ensure that the transistor turns ON when the switch is closed and OFF when the switch is open.

\[
\text{Figure 4-19}
\]

7. \(R_C = 10 \text{ ohms}, \beta_3 = 20, \beta_2 = 50, \beta_1 = 100.\)
\[
R_4 = \underline{\quad} \quad R_3 = \underline{\quad} \quad R_2 = \underline{\quad}
\]
8. \(R_C = 28 \text{ ohms}, \beta_3 = 10, \beta_2 = 75, \beta_1 = 75.\)
\[
R_4 = \underline{\quad} \quad R_3 = \underline{\quad} \quad R_2 = \underline{\quad}
\]
9. \(R_C = 1 \text{ ohm}, \beta_3 = 10, \beta_2 = 50, \beta_1 = 75.\)
\[
R_4 = \underline{\quad} \quad R_3 = \underline{\quad} \quad R_2 = \underline{\quad}
\]

Questions 10–12 use the circuit shown in Figure 4-20. Find values for \(R_1\) and \(R_2\) that ensure that the transistor turns ON when the switch is closed and OFF when the switch is open.
10. \( R_C = 1 \, \text{k}\Omega, \beta = 100 \).
\[
R_1 = \quad R_2 = \quad
\]

11. \( R_C = 22 \, \text{k}\Omega, \beta = 75 \).
\[
R_1 = \quad R_2 = \quad
\]

12. \( R_C = 100 \, \text{\Omega}, \beta = 30 \).
\[
R_1 = \quad R_2 = \quad
\]

13. An N-channel JFET has a transfer curve with the following characteristics. When \( V_{GS} = 0 \, \text{V} \), the saturation current, \( (I_{DSS}) \) is 10.5 mA; the cutoff voltage is \(-3.8 \, \text{V}\). With a drain supply of 20 V, design a biasing circuit that switches the JFET from the ON state to the OFF state.

**Answers to Self-Test**

The exercises in this Self-Test show calculations that are typical of those found in practice, and the odd results you sometimes get are quite common. Thus, choosing a nearest standard value of resistor is a common practice. If your answers do not agree with those given here, review the problems indicated in parentheses before you go on to the next chapter.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>100 k\Omega</td>
<td>(problem 8)</td>
</tr>
<tr>
<td>2.</td>
<td>235 k\Omega. Choose 240 k\Omega as a standard value.</td>
<td>(problem 8)</td>
</tr>
<tr>
<td>3.</td>
<td>1.65 M\Omega. Choose 1.6 M\Omega as a standard value.</td>
<td>(problem 8)</td>
</tr>
<tr>
<td>4.</td>
<td>( R_3 = 2k\Omega; R_1 = 200 k\Omega; R_2 = 200 k\Omega ). Use these values.</td>
<td>(problem 22)</td>
</tr>
</tbody>
</table>
5. \( R_3 = 200 \, \text{ohms}; R_1 = 10 \, \text{k}\Omega; R_2 = 10 \, \text{k}\Omega. \) Use these values. (problem 22)

6. \( R_3 = 18.8 \, \text{k}\Omega. \) Choose 18 k\( \Omega \) as a standard value. (problem 22)
   \[ R_1 = 1.41 \, \text{M}\Omega. \] Choose 1.5 M\( \Omega \) as a standard value.

   Select 1 M\( \Omega \) for \( R_2. \)

7. \( R_4 = 200 \, \text{ohms}; R_3 = 10 \, \text{k}\Omega; R_2 = 1 \, \text{M}\Omega; R_1 = 1 \, \text{M}\Omega. \) Use these values. (problem 26)

8. \( R_4 = 280 \, \text{ohms}. \) Choose 270 ohms as a standard value. (problem 26)

   \[ R_3 = 21 \, \text{k}\Omega. \] Choose 22 k\( \Omega \) as a standard value.

   \[ R_2 = 1.56 \, \text{M}\Omega. \] Choose 1.5 or 1.6 M\( \Omega \) as a standard value.

   \[ R_1 = 1.56 \, \text{M}\Omega. \] Choose 1.5 or 1.6 M\( \Omega \) as a standard value.

9. \( R_4 = 10 \, \text{ohms}. \) Choose 10 ohms as a standard value. (problem 26)

   \[ R_3 = 500 \, \text{ohms}. \] Choose 510 ohms as a standard value.

   \[ R_2 = 37.5 \, \text{k}\Omega. \] Choose 39 k\( \Omega \) as a standard value.

10. \( R_1 = 37.5 \, \text{k}\Omega. \) Choose 39 k\( \Omega \) as a standard value. (problems 31–33)

    \[ R_3 = 700 \, \text{ohms}. \] Choose 680 or 720 ohms as a standard value.

    \[ R_1 = 8.45 \, \text{k}\Omega. \] Choose 8.2 k\( \Omega \) as a standard value.

    If 0.7 is ignored, then \( R_1 = 9.1 \, \text{k}\Omega. \)

11. \( R_2 = 11.7 \, \text{k}\Omega. \) Choose 12 K\( \Omega \) as a standard value. (problems 31–33)

    \[ R_1 = 141 \, \text{k}\Omega. \] Choose 140 or 150 k\( \Omega \) as a standard value.

12. \( R_2 = 21 \, \text{ohms}. \) Choose 22 ohms as a standard value. (problems 31–33)

    \[ R_1 = 273 \, \text{ohms}. \] Choose 270 ohms as a standard value.

13. Use the circuit shown in Figure 4-16. Set the gate supply at a value slightly more negative than \(-3.8 \, \text{V}.\)

    A value of \(-4 \, \text{V} \) would work. Make resistor \( R_G = 1 \, \text{M}\Omega. \) Set \( R_D \) at a value of \((20 \, \text{volts})/(10.5 \, \text{mA}), \) which calculates a resistance of 1.9 k\( \Omega. \) You can wire a standard resistor of 1 k\( \Omega \) in series with a standard resistor of 910 ohms to obtain a resistance of 1.91 k\( \Omega. \) (problems 39 and 41)
You need to have some basic knowledge of alternating current (AC) to study electronics. To understand AC, you basically have to understand sine waves.

A *sine wave* is simply a shape, like waves in the ocean. Sine waves in electronics are used to represent voltage or current moving up and down in magnitude. In AC electronics, some signals or power sources (such as the house current provided at a wall plug) are represented by sine waves. The sine wave shows how the voltage moves from 0 volts to its peak voltage, and back down through 0, its negative peak voltage at 60 cycles per second, or 60 Hertz (Hz).

The sound from a musical instrument also consists of sine waves. When you combine sounds (such as all the instruments in an orchestra), you get complex combinations of many sine waves, at various frequencies.

The study of AC starts with the properties of simple sine waves, and continues with an examination of how electronic circuits can generate or change sine waves.

This chapter discusses the following:

- The generator
- The sine wave
- Peak-to-peak and RMS voltages
- Resistors in AC circuits
- Capacitive and inductive reactance
- Resonance
The Generator

1 In electronic circuits powered by direct current, the voltage source is usually a battery or solar cell, which produces a constant voltage and a constant current through a conductor.

In electronic circuits or devices powered by alternating current, the voltage source is usually a generator, which produces a regular output waveform, such as a sine wave.

Question

Draw one cycle of a sine wave.

Answer

See Figure 5-1.

![Figure 5-1](image)

2 A number of electronic instruments are used in the laboratory to produce sine waves. For purposes of this discussion, the term generator means a sine wave source. These generators allow you to adjust the voltage and frequency by turning a dial or pushing a button. These instruments are called by various names, generally based on their method of producing the sine wave, or their application as a test instrument. The most popular generator at present is called a function generator. It actually provides a choice of functions or waveforms, including a square wave and a triangle wave. These waveforms are useful in testing certain electronic circuits.

The symbol shown in Figure 5-2 represents a generator. Note that a sine wave shown within a circle designates an AC sine wave source.

![Figure 5-2](image)

Questions

A. What is the most popular instrument used in the lab to produce waveforms?
B. What does the term AC mean?

C. What does the sine wave inside a generator symbol indicate?

**Answers**

A. The function generator.

B. Alternating current, as opposed to direct current.

C. The generator is a sine wave source.

Some key parameters of sine waves are indicated in Figure 5-3. The two axes are voltage and time.

![Figure 5-3]

The zero axis is the reference point from which all voltage measurements are made.

**Questions**

A. What is the purpose of the zero axis?

B. What is the usual point for making time measurements?

**Answers**

A. It is the reference point from which all voltage measurements are made.
B. Time measurements can be made from any point in the sine wave, but usually they are made from a point at which the sine wave crosses the zero axis.

4 The three most important voltage or amplitude measurements are the peak (p), peak-to-peak (pp), and the root mean square (rms) voltages.

The following equations show the relationship between p, pp, and rms voltages for sine waves. The relationships between p, pp, and rms voltages differ for other waveforms (such as square waves).

\[ V_p = \sqrt{2} \times V_{\text{rms}} \]
\[ V_{\text{pp}} = 2V_p = 2 \times \sqrt{2} \times V_{\text{rms}} \]
\[ V_{\text{rms}} = \frac{1}{\sqrt{2}} \times V_p = \frac{1}{\sqrt{2}} \times \frac{V_{\text{pp}}}{2} \]

Note the following:
\[ \sqrt{2} = 1.414 \]
\[ \frac{1}{\sqrt{2}} = 0.707 \]

**Question**

If the pp voltage of a sine wave is 10 volts, find the rms voltage.

**Answer**

\[ V_{\text{rms}} = \frac{1}{\sqrt{2}} \times \frac{V_{\text{pp}}}{2} = 0.707 \times \frac{10}{2} = 3.535 \text{ V} \]

5 Calculate the following for a sine wave.

**Question**

If the rms voltage is 2 volts, find the pp voltage.

**Answer**

\[ V_{\text{pp}} = 2 \times \sqrt{2} \times V_{\text{rms}} = 2 \times 1.414 \times 2 = 5.656 \text{ V} \]
6. Calculate the following for a sine wave.

**Questions**

A.  \( V_{pp} = 220 \) volts. Find \( V_{rms} \).

B.  \( V_{rms} = 120 \) volts. Find \( V_{pp} \).

**Answers**

A.  77.77 volts

B.  340 volts (This is the common house current supply voltage; 340 \( V_{pp} = 120 \) \( V_{rms} \).)

7. There is a primary time measurement for sine waves. The duration of the complete sine wave is shown in Figure 5-4 and referred to as a *cycle*. All other time measurements are fractions or multiples of a cycle.

![Figure 5-4](image)

**Questions**

A.  What is one complete sine wave called?

B.  What do you call the time it takes to complete one sine wave?

C.  How is the frequency of a sine wave related to this time?
Chapter 5: AC Pre-Test and Review

D. What is the unit for frequency?
E. If the period of a sine wave is 0.5 ms, what is its frequency? What is the frequency of a sine wave with a period of 40 µsec?
F. If the frequency of a sine wave is 60 Hz, what is its period? What is the period of sine waves with frequencies of 12.5 kHz and 1 MHz?

Answers
A. A cycle
B. The period, \( T \)
C. \( f = \frac{1}{T} \)
D. Hertz (Hz) is the standard unit for frequency. One Hertz equals one cycle per second.
E. 2 kHz, 25 kHz
F. 16.7 ms, 80 µsec, 1 µsec

Choose all answers that apply.

Question
Which of the following could represent electrical AC signals?
A. A simple sine wave
B. A mixture of many sine waves, of different frequencies and amplitudes
C. A straight line

Answers
A and B

Resistors in AC Circuits

Alternating current is passed through components, just as direct current is. Resistors interact with alternating current just as they do with direct current.
**Question**

Suppose an AC signal of 10 V<sub>pp</sub> is connected across a 10 ohm resistor. What is the current through the resistor?

**Answer**

Use Ohm’s law.

\[ I = \frac{V}{R} = \frac{10 \text{ V}_{\text{pp}}}{10 \text{ ohms}} = 1 \text{ A}_{\text{pp}} \]

Because the voltage is given in pp, the current is a pp current.

---

10 An AC signal of 10 V<sub>rms</sub> is connected across a 20 ohm resistor.

**Question**

Find the current.

**Answer**

\[ I = \frac{10 \text{ V}_{\text{rms}}}{20 \text{ ohms}} = 0.5 \text{ A}_{\text{rms}} \]

Because the voltage was given in rms, the current is rms.

---

11 You apply an AC signal of 10 V<sub>pp</sub> to the voltage divider circuit shown in Figure 5-5.
Chapter 5  AC Pre-Test and Review

Question

Find $V_{out}$.

Answer

$$V_{out} = V_{in} \times \frac{R_2}{(R_1 + R_2)} = 10 \times \frac{2k\Omega}{(8k\Omega + 2k\Omega)} = 10 \times \frac{2}{10} = 2V_{pp}$$

Capacitors in AC Circuits

12. A capacitor opposes the flow of an AC current.

Questions

A. What is this opposition to the current flow called?

B. What is this similar to in DC circuits?

Answers

A. Reactance
B. Resistance

13. Just as with resistance, you determine reactance by using an equation.

Questions

A. What is the equation for reactance?

B. What does each symbol in the equation stand for?

C. How does the reactance of a capacitor change as the frequency of a signal increases?
**Answers**

A. \[ X_C = \frac{1}{2\pi fC} \]

B. \[ X_C = \text{the reactance of the capacitor in ohms} \]
\[ f = \text{the frequency of the signal in hertz.} \]
\[ C = \text{the value of the capacitor in farads.} \]

C. The reactance of a capacitor decreases as the frequency of the signal increases.

14 Assume the capacitance is 1 \( \mu \text{F} \) and the frequency is 1 kHz.

**Question**

Find the capacitor’s reactance. (*Note*: \( 1/(2\pi) = 0.159 \), approximately.)

**Answer**

\[ X_C = \frac{1}{2\pi fC} \]
\[ f = 1 \text{ kHz} = 10^3 \text{ Hz} \]
\[ C = 1 \mu \text{F} = 10^{-6} \text{ F} \]

Thus,
\[ X_C = \frac{0.159}{10^3 \times 10^{-6}} = 160 \text{ ohms} \]

15 Now, perform these two simple calculations. In each case, find \( X_{C1} \); the capacitor’s reactance at 1 kHz, and \( X_{C2} \); the capacitors reactance at the frequency specified in the question.

**Questions**

Find \( X_{C1} \) and \( X_{C2} \):

A. \[ C = 0.1 \mu \text{F}, f = 100 \text{ Hz} \]

B. \[ C = 100 \mu \text{F}, f = 2 \text{ kHz} \]
A circuit containing a capacitor in series with a resistor (as shown in Figure 5-6) functions as a voltage divider.

![Figure 5-6](image)

While this voltage divider provides a reduced output voltage, just like a voltage divider using two resistors, there's a complication. If you view the output and input voltage waveforms on an oscilloscope, you see that one is shifted away from the other. The two waveforms are said to be “out of phase.” Phase is an important concept in understanding how certain electronic circuits work. In Chapter 6, you learn about phase relationships for some AC circuits. You will also encounter this again when you study amplifiers.

### The Inductor in an AC Circuit

An inductor is a coil of wire, usually wound many times around a piece of soft iron. In some cases, the wire is wound around a nonconducting material.

### Questions

A. Is the AC reactance of an inductor high or low? Why?

B. Is the DC resistance high or low?
C. What is the relationship between the AC reactance and the DC resistance?

D. What is the formula for the reactance of an inductor?

**Answers**

A. Its AC reactance \( (X_L) \), which can be quite high, is a result of the electromagnetic field that surrounds the coil and induces a current in the opposite direction to the original current.

B. Its DC resistance \( (r) \), which is usually quite low, is simply the resistance of the wire that makes up the coil.

C. None.

D. \( X_L = 2\pi fL \), where \( L \) = the value of the inductance in henrys. Using this equation, you can expect the reactance of an inductor to increase as the frequency of a signal passing through it increases.

17 Assume the inductance value is 10 henrys (H) and the frequency is 100 Hz.

**Question**

Find the reactance.

**Answer**

\[
X_L = 2\pi fL = 2\pi \times 100 \times 10 = 6280 \text{ ohms}
\]

18 Now, try these two examples. In each case, find \( X_{L1} \); the reactance of the inductor at 1 kHz and \( X_{L2} \); the reactance at the frequency given in the question.

**Questions**

A. \( L = 1 \text{ mH (0.001 H)}, f = 10 \text{ kHz} \)
B. \( L = 0.01 \text{ mH}, f = 5 \text{ MHz} \)

### Answers

**A.** \( X_{L1} = 6.28 \times 10^3 \times 0.001 = 6.28 \text{ ohms} \)
\( X_{L2} = 6.28 \times 10 \times 10^3 \times 0.001 = 62.8 \text{ ohms} \)

**B.** \( X_{L1} = 6.28 \times 10^3 \times 0.01 \times 10^{-3} = 0.0628 \text{ ohms} \)
\( X_{L2} = 6.28 \times 5 \times 10^6 \times 0.01 \times 10^{-3} = 314 \text{ ohms} \)

A circuit containing an inductor in series with a resistor functions as a voltage divider, just as a circuit containing a capacitor in series with a resistor does. Again, the relationship between the input and output voltages is not as simple as a resistive divider. The circuit is discussed in Chapter 6.

### Resonance

Calculations in previous problems demonstrate that capacitive reactance decreases as frequency increases, and that inductive reactance increases as frequency increases. If a capacitor and an inductor are connected in series, there will be one frequency at which their reactance values are equal.

### Questions

**A.** What is this frequency called?

**B.** What is the formula for calculating this frequency? You can find it by setting \( X_L = X_C \) and solving for frequency.

### Answers

**A.** The resonant frequency

**B.** \( 2\pi fL = 1/(2\pi fC) \). Rearranging the terms in this equation to solve for \( f \) yields the following formula for the resonant frequency \( (f_r) \):

\[
f_r = \frac{1}{2\pi \sqrt{LC}}
\]
20 If a capacitor and an inductor are connected in parallel, there will also be a resonant frequency. Analysis of a parallel resonant circuit is not as simple as for a series resonant circuit. The reason for this is that inductors always have some internal resistance, which complicates some of the equations. However, under certain conditions, the analysis is similar. For example, if the reactance of the inductor in ohms is more than 10 times greater than its own internal resistance (r), the formula for the resonant frequency is the same as if the inductor and capacitor were connected in series. This is an approximation that you will use often.

Questions

For the following inductors, determine if the reactance is more or less than 10 times its internal resistance. A resonant frequency is provided.

A. \( f_r = 25 \text{ kHz}, L = 2 \text{ mH}, r = 20 \text{ ohms} \)

B. \( f_r = 1 \text{ kHz}, L = 33.5 \text{ mH}, r = 30 \text{ ohms} \)

Answers

A. \( X_L = 314 \text{ ohms}, \) which is more than 10 times greater than \( r. \)
B. \( X_L = 210 \text{ ohms}, \) which is less than 10 times greater than \( r. \)

NOTE Chapter 7 discusses both series and parallel resonant circuits. At that time, you’ll learn many useful techniques and formulas.

21 Find the resonant frequency \( (f_r) \) for the following capacitors and inductors when they are connected both in parallel and in series. Assume \( r \) is negligible.

Questions

Determine \( f_r: \)

A. \( C = 1 \text{ \mu F}, L = 1 \text{ henry} \)

B. \( C = 0.2 \text{ \mu F}, L = 3.3 \text{ mH} \)
Answers

A. \( f_r = \frac{0.159}{\sqrt{10^{-6} \times 1}} = 160 \text{ Hz} \)

B. \( f_r = \frac{0.159}{\sqrt{3.3 \times 10^{-3} \times 0.2 \times 10^{-6}}} = 6.2 \text{ kHz} \)

22. Now, try these two final examples.

Questions

Determine \( f_r \):

A. \( C = 10 \ \mu \text{F}, L = 1 \ \text{henry} \)

B. \( C = 0.0033 \ \mu \text{F}, L = 0.5 \ \text{mH} \)

Answers

A. \( f_r = 50 \ \text{Hz (approximately)} \)

B. \( f_r = 124 \ \text{kHz} \)

Understanding resonance is important to understanding certain electronic circuits, such as filters and oscillators. Filters are electronic circuits that either block a certain band of frequencies, or pass a certain band of frequencies. One common use of filters is in circuits used for radio, TV, and other communications applications. Oscillators are electronic circuits that generate a continuous output without an input signal. The type of oscillator that uses a resonant circuit produces pure sine waves. (You learn more about oscillators in Chapter 9.)

Summary

Following are the concepts presented in this chapter:

- The sine wave is used extensively in AC circuits.
- The most common laboratory generator is the function generator.
- \( V_p = \sqrt{2} \times V_{\text{rms}} \), \( V_{pp} = 2\sqrt{2} \times V_{\text{rms}} \)
\[ f = \frac{1}{T} \]
\[ I_{\text{pp}} = \frac{V_{\text{pp}}}{R}, \quad I_{\text{rms}} = \frac{V_{\text{rms}}}{R} \]

- Capacitive reactance is calculated as follows:
  \[ X_C = \frac{1}{(2\pi fC)} \]

- Inductive reactance is calculated as follows:
  \[ X_L = 2\pi fL \]

- Resonant frequency is calculated as follows:
  \[ f_r = \frac{1}{2\pi\sqrt{LC}} \]

**Self-Test**

The following problems test your understanding of the basic concepts presented in this chapter. Use a separate sheet of paper for calculations if necessary. Compare your answers with the answers provided following the test.

1. Convert the following peak or peak-to-peak values to rms values:
   A. \( V_p = 12 \text{ V}, V_{\text{rms}} = \) 
   B. \( V_p = 80 \text{ mV}, V_{\text{rms}} = \) 
   C. \( V_{\text{pp}} = 100 \text{ V}, V_{\text{rms}} = \)

2. Convert the following rms values to the required values shown:
   A. \( V_{\text{rms}} = 120 \text{ V}, V_p = \)
   B. \( V_{\text{rms}} = 100 \text{ mV}, V_p = \)
   C. \( V_{\text{rms}} = 12 \text{ V}, V_{\text{pp}} = \)

3. For the given value, find the period or frequency:
   A. \( T = 16.7 \text{ ms}, f = \)
   B. \( f = 15 \text{ kHz}, T = \)

4. For the circuit shown in Figure 5-7, find the total current flow and the voltage across \( R_2, (V_{\text{out}}) \).

![Figure 5-7](image)
5. Find the reactance of the following components:
   A. \( C = 0.16 \ \mu F, \ f = 12 \ \text{kHz}, \ X_C = \)________________________
   B. \( L = 5 \ \text{mH}, \ f = 30 \ \text{kHz}, \ X_L = \)________________________

6. Find the frequency necessary to cause each reactance shown:
   A. \( C = 1 \ \mu F, \ X_C = 200 \ \text{ohms}, \ f = \)________________________
   B. \( L = 50 \ \mu F, \ X_L = 320 \ \text{ohms}, \ f = \)________________________

7. What would be the resonant frequency for the capacitor and inductor values given in A and B of question 5 if they were connected in series?

8. What would be the resonant frequency for the capacitor and inductor values given in A and B of question 6 if they were connected in parallel? What assumption would you have to make?

---

**Answers to Self-Test**

If your answers do not agree with those provided here, review the problems indicated in parentheses before you go on to the next chapter.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A. ( 8.5 \ \text{V}_{\text{rms}} ) (problems 4–6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. ( 56.6 \ \text{V}_{\text{rms}} )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. ( 35.4 \ \text{V}_{\text{rms}} )</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>A. ( 169.7 \ \text{V}_p ) (problems 4–6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. ( 141.4 \ \text{mV}_p )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. ( 33.9 \ \text{V}_{\text{pp}} )</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>A. ( 60 \ \text{Hz} ) (problem 7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. ( 66.7 \ \mu \text{sec} )</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>( I_T = 0.1 \ \text{A}<em>{\text{rms}}, \ \text{V}</em>{\text{out}} = 12 \ \text{V}_{\text{rms}} ) (problems 9–11)</td>
<td></td>
</tr>
</tbody>
</table>
5. A. 82.9 ohms  
    B. 942.5 ohms  

6. A. 795.8 Hz  
    B. 1.02 kHz  

7. 5.63 kHz  

8. 711.8 Hz. Assume the internal resistance of the inductor is negligible.
Certain types of circuits are found in most electronic devices used to process alternating current (AC) signals. One of the most common of these, filter circuits, is covered in this chapter. Filter circuits are formed by resistors and capacitors (RC), or resistors and inductors (RL). These circuits (and their effect on AC signals) play a major part in communications, consumer electronics, and industrial controls.

When you complete this chapter you will be able to do the following:

- Calculate the output voltage of an AC signal after it passes through a high pass RC filter circuit.
- Calculate the output voltage of an AC signal after it passes through a low pass RC circuit.
- Calculate the output voltage of an AC signal after it passes through a high pass RL circuit.
- Calculate the output voltage of an AC signal after it passes through a low pass RL circuit.
- Draw the output waveform of an AC or combined AC-DC signal after it passes through a filter circuit.
- Calculate simple phase angles and phase differences.

### Capacitors in AC Circuits

An AC signal is continually changing, whether it is a pure sine wave or a complex signal made up of many sine waves. If such a signal is applied to
one plate of a capacitor, it will be induced on the other plate. To express this another way, a capacitor will “pass” an AC signal as illustrated in Figure 6-1.

**NOTE** Unlike an AC signal, a DC signal is blocked by a capacitor. Equally important is the fact that a capacitor is not a short circuit to an AC signal.

![Figure 6-1](image)

**Questions**

A. What is the main difference in the effect of a capacitor upon an AC signal versus a DC signal?

B. Does a capacitor appear as a short or an open circuit to an AC signal?

**Answers**

A. A capacitor will pass an AC signal, while it will not pass a DC voltage level.

B. Neither

2 A capacitor will, in general, oppose the flow of an AC current to some degree. This opposition to current flow, as you saw in Chapter 5, is called the reactance of the capacitor.

Reactance is similar to resistance, except that the reactance of a capacitor changes when you vary the frequency of a signal. The reactance of a capacitor can be calculated by a formula introduced in Chapter 5.

**Question**

Write the formula for the reactance of a capacitor.

**Answer**

\[ X_C = \frac{1}{2\pi fC} \]
From this formula, you can see that the reactance changes when the frequency of the input signal changes.

**Question**

If the frequency increases, what happens to the reactance?

**Answer**

It decreases.

If you had difficulty with these first three problems, you should review the examples in Chapter 5.

**Capacitors and Resistors in Series**

For simplicity, consider all inputs at this time to be pure sine waves. The circuit shown in Figure 6-2 shows a sine wave as the input signal to a capacitor.

![Figure 6-2](image)

**Question**

If the input is a pure sine wave, what is the output?

**Answer**

A pure sine wave

The output sine wave has the same frequency as the input sine wave. A capacitor cannot change the frequency of the signal. But, remember, with
an AC input, the capacitor behaves in a manner similar to a resistor in that the capacitor does have some level of opposition to the flow of alternating current. The level of opposition depends upon the value of the capacitor and the frequency of the signal. Therefore, the output amplitude of a sine wave will be less than the input amplitude.

**Question**

With an AC input to a simple circuit like the one described here, what does the capacitor appear to behave like?

**Answer**

It appears to have opposition to alternating current similar to the behavior of a resistor.

6 If you connect a capacitor and resistor in series (as shown in Figure 6-3), the circuit functions as a voltage divider.

![Figure 6-3](image)

**Question**

What formula would you use to calculate the output voltage for a voltage divider formed by connecting two resistors in series?

**Answer**

\[ V_{out} = V_{in} \times \frac{R_2}{R_1 + R_2} \]
You can calculate a total resistance to the flow of electric current for a circuit containing two resistors in series.

**Question**

What is the formula for this total resistance?

**Answer**

\[ R_T = R_1 + R_2 \]

You can also calculate the total opposition to the flow of electric current for a circuit containing a capacitor and resistor in series. This parameter is called *impedance*, and you can calculate it using the following formula:

\[ Z = \sqrt{X_C^2 + R^2} \]

where:

- \( Z \) = the impedance of the circuit in ohms
- \( X_C \) = the reactance of the capacitor in ohms
- \( R \) = the resistance of the resistor in ohms

**Questions**

Use the following steps to calculate the impedance of the circuit, and the current flowing through the circuit shown in Figure 6-4.

**Figure 6-4**

A.

\[ X_C = \frac{1}{2\pi fC} = \]
Chapter 6  AC in Electronics

B.  
\[ Z = \sqrt{X_C^2 + R^2} = \]

C.  
\[ I = \frac{V}{Z} = \]

**Answers**

A.  400 ohms  
B.  500 ohms  
C.  20 mA_{pp}

9. Now, for the circuit shown in Figure 6-4, calculate the impedance and current using the values provided.

**Questions**

A.  \( C = 530 \, \mu\text{F}, R = 12 \, \text{ohms}, V_{in} = 26 \, V_{pp}, f = 60 \, \text{Hz} \)

B.  \( C = 1.77 \, \mu\text{F}, R = 12 \, \text{ohms}, V_{in} = 150 \, V_{pp}, f = 10 \, \text{kHz} \)

**Answers**

A.  \( Z = 13 \, \text{ohms}, I = 2 \, A_{pp} \)  
B.  \( Z = 15 \, \text{ohms}, I = 10 \, A_{pp} \)

10. You can calculate \( V_{out} \) for the circuit shown in Figure 6-5 with a formula similar to the formula used in Chapter 5 to calculate \( V_{out} \) for a voltage divider composed of two resistors.
The formula to calculate the output voltage for this circuit is as follows:

\[ V_{\text{out}} = V_{\text{in}} \times \frac{R}{Z} \]

**Questions**

Calculate the output voltage in this circuit using the component values and input signal voltage and frequency listed on the circuit diagram shown in Figure 6-6.

**Figure 6-6**

A. Find \( X_C \):

B. Find \( Z \):

C. Use the formula to find \( V_{\text{out}} \):
172 Chapter 6  AC in Electronics

Answers

A. \( X_C = 500 \) ohms (rounded off)
B. \( Z = 1120 \) ohms (rounded off)
C. \( V_{out} = 8.9 \) V pp

Now, find \( V_{out} \) for the circuit in Figure 6-5 using the given component values, signal voltage, and frequency.

Questions

A. \( C = 0.16 \) \( \mu \)F, \( R = 1 \) k\( \Omega \), \( V_{in} = 10 \) V pp, \( f = 1 \) kHz

B. \( C = 0.08 \) \( \mu \)F, \( R = 1 \) k\( \Omega \), \( V_{in} = 10 \) V pp, \( f = 1 \) kHz

Answers

A. \( V_{out} = 7.1 \) V pp
B. \( V_{out} = 4.5 \) V pp

NOTE Hereafter, you can assume that the answer is a peak-to-peak value if the given value is a peak-to-peak value.

The output voltage is said to be attenuated in the voltage divider calculations as shown in the calculations in problems 10 and 11. Compare the input and output voltages in problems 10 and 11.

Question

What does attenuated mean?

Answer

To reduce in amplitude or magnitude (that is, \( V_{out} \) is smaller than \( V_{in} \)).

When you calculated \( V_{out} \) in the examples in problems 10 and 11, you first had to find \( X_C \). However, \( X_C \) changes as the frequency changes, while
the resistance remains constant. Therefore, as the frequency changes, the impedance $Z$ changes, and so also does the amplitude of the output voltage $V_{\text{out}}$.

If $V_{\text{out}}$ is plotted against frequency on a graph, the curve looks like that shown in Figure 6-7.

![Figure 6-7](image)

The frequencies of $f_1$ (at which the curve starts to rise) and $f_2$ (where it starts to level off) depend on the values of the capacitor and the resistor.

**Questions**

Calculate the output voltage for the circuit shown in Figure 6-8 for frequencies of 100 Hz, 1 kHz, 10 kHz, and 100 kHz.

![Figure 6-8](image)

A. 100 Hz:

B. 1 kHz:
174 Chapter 6 = AC in Electronics

C. 10 kHz:

D. 100 kHz:

E. Plot these values for \( V_{out} \) against \( f \) and draw a curve to fit the points. Use a separate sheet of paper to draw your graph.

**Answers**

A. \( V_{out} = 0.1 \) V  
B. \( V_{out} = 1 \) V  
C. \( V_{out} = 7.1 \) V  
D. \( V_{out} = 10 \) V  
E. The curve is shown in Figure 6-9.

![Figure 6-9](image)

**NOTE** You can see that \( V_{out} \) is equal to \( V_{in} \) for the highest frequency, and at nearly zero for the lowest frequency. You call this type of circuit a high pass circuit because it will pass high frequency signals with little attenuation and block low frequency signals.

**The High Pass Filter Experiment**

The objective of the following experiment is to determine how \( V_{out} \) changes as the frequency of the input signal changes for the high pass filter circuit shown in Figure 6-8. You will also calculate \( X \) and \( Z \) for each frequency value to show the relationship between the output voltage and the impedance.
You will need the following equipment and supplies:

- One 1 kΩ resistor.
- One 0.016 µF capacitor.
- One function generator.
- One oscilloscope. (You can substitute a multimeter and measure $V_{out}$ in rms voltage rather than peak-to-peak voltage.)
- One breadboard.

If you do not have what you need to set up the circuit and measure the values, just read through the experiment.

Follow these steps to complete the experiment:

1. Set up the circuit shown in Figure 6-8 on the breadboard.
2. Set the function generator to generate a 10 Vpp, 25 Hz sine wave to be used for $V_{in}$, measure $V_{out}$ and record the reading in the following table.

<table>
<thead>
<tr>
<th>$f_{in}$</th>
<th>$X_C$</th>
<th>$Z$</th>
<th>$V_{out}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Increase the frequency of $V_{in}$ to the value of $f_{in}$ shown in the next row of the preceding table, measure $V_{out}$ and record the reading in the table. Repeat this until you have entered the value of $V_{out}$ in the last row.
4. Calculate the values of $X_C$ and $Z$ for each row and enter them in the preceding table.

5. Plot $V_{out}$ vs $f_{in}$ with the voltage on the vertical axis and the frequency on the X axis (use graph paper with a log scale for the X axis). The curve should have the same shape as the curve in Figure 6-9, but don’t worry if your curve is shifted slightly to the right or left.

**Question**

What would cause the curve to be moved slightly to the right or the left?

**Answer**

You may have used a resistor and capacitor with slightly different values than those used to produce the curve shown in Figure 6-10. Such variation in resistor and capacitor values are to be expected, given the manufacturing tolerance allowed for standard components.

Your values should be close to those shown in the following table, and the curve should be very similar to Figure 6-10.

<table>
<thead>
<tr>
<th>$f_{in}$</th>
<th>$X_C$</th>
<th>$Z$</th>
<th>$V_{out}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Hz</td>
<td>400 kΩ</td>
<td>400 kΩ</td>
<td>0.025 V</td>
</tr>
<tr>
<td>50 Hz</td>
<td>200 kΩ</td>
<td>200 kΩ</td>
<td>0.05 V</td>
</tr>
<tr>
<td>100 Hz</td>
<td>100 kΩ</td>
<td>100 kΩ</td>
<td>0.1 V</td>
</tr>
<tr>
<td>250 Hz</td>
<td>40 kΩ</td>
<td>40 kΩ</td>
<td>0.25 V</td>
</tr>
<tr>
<td>500 Hz</td>
<td>20 kΩ</td>
<td>20 kΩ</td>
<td>0.5 V</td>
</tr>
<tr>
<td>1 kHz</td>
<td>10 kΩ</td>
<td>10 kΩ</td>
<td>1 V</td>
</tr>
<tr>
<td>3 kHz</td>
<td>3.3 kΩ</td>
<td>3.5 kΩ</td>
<td>2.9 V</td>
</tr>
<tr>
<td>5 kHz</td>
<td>2 kΩ</td>
<td>2.2 kΩ</td>
<td>4.47 V</td>
</tr>
<tr>
<td>7 kHz</td>
<td>1.4 kΩ</td>
<td>1.7 kΩ</td>
<td>5.8 V</td>
</tr>
<tr>
<td>10 kHz</td>
<td>1 kΩ</td>
<td>1.414 kΩ</td>
<td>7.1 V</td>
</tr>
<tr>
<td>20 kHz</td>
<td>500 Ω</td>
<td>1.12 kΩ</td>
<td>8.9 V</td>
</tr>
<tr>
<td>30 kHz</td>
<td>330 Ω</td>
<td>1.05 kΩ</td>
<td>9.5 V</td>
</tr>
<tr>
<td>50 kHz</td>
<td>200 Ω</td>
<td>1.02 kΩ</td>
<td>9.8 V</td>
</tr>
<tr>
<td>100 kHz</td>
<td>100 Ω</td>
<td>1 kΩ</td>
<td>10 V</td>
</tr>
</tbody>
</table>
**Question**

What would cause your curve to be moved slightly to the right or the left of the curve shown in Figure 6-10?

**Answer**

Slightly different values for the resistor and capacitor that you used versus the resistor and capacitor used to produce the curve in Figure 6-10. Variations in resistor and capacitor values are to be expected, given the tolerance allowed for standard components.

The circuit shown in Figure 6-11 is used in many electronic devices.

![Circuit Diagram](image-url)

**Figure 6-11**
For this circuit, you measure the output voltage across the capacitor, instead of across the resistor (between point A and ground).

The impedance of this circuit is the same as that of the circuit used in the last few problems. It will still behave like a voltage divider, and you can calculate the output voltage with an equation that is similar to the one you used for the high pass filter circuit discussed in the last few problems. However, by switching the positions of the resistor and capacitor to create the circuit shown in Figure 6-11, you switch which frequencies will be attenuated and which will not be attenuated, making the new circuit a low pass filter whose characteristics you will explore in the next few problems.

Questions

A. What is the impedance formula for the circuit?

B. What is the formula for the output voltage?

Answers

A. \[ Z = \sqrt{X_C^2 + R^2} \]

B. \[ V_{out} = V_{in} \times \frac{X_C}{Z} \]

Refer to the circuit shown in Figure 6-11 and the following values:

\[ V_{in} = 10 \text{ V}_{pp}, f = 2 \text{ kHz} \]
\[ C = 0.1 \mu\text{F}, R = 1 \text{k}\Omega \]

Questions

Find the following:

A. \( X_C \):
Once again refer to the circuit shown in Figure 6-11 to answer the following question.

**Question**

Calculate the voltage across the resistor using the values given in problem 16, along with the calculated impedance value.

**Answer**

\[ V_R = V_{in} \times \frac{R}{Z} = 10 \times \frac{1000}{1277} = 7.83V_{pp} \]

Use the information from problems 16 and 17 to answer the following question.

**Question**

What is the formula to calculate \( V_{in} \) using the voltages across the capacitor and the resistor?

**Answer**

The formula is \( V_{in}^2 = V_C^2 + V_R^2 \).
19 \(V_{\text{out}}\) of the circuit shown in Figure 6-11 changes as the frequency of the input signal changes. Figure 6-12 shows the graph of \(V_{\text{out}}\) versus frequency for this circuit.

![Figure 6-12](image)

**Question**

What parameters determine \(f_1\) and \(f_2\)?

**Answer**

The values of the capacitor and the resistor

**NOTE** You can see in Figure 6-12 that \(V_{\text{out}}\) is large for the lowest frequency, and nearly zero for the highest frequency. You call this type of circuit a low pass circuit because it will pass low frequency signals with little attenuation while blocking high frequency signals.

**Phase Shift of an RC Circuit**

20 In both of the circuits shown in Figure 6-13, the output voltage is different from the input voltage.

![Figure 6-13](image)
Question
In what ways do they differ?

Answer
The signal is attenuated, or reduced. The amount of attenuation depends upon the frequency of the signal.

The voltage is also changed in another way. The voltage across a capacitor rises and falls at the same frequency as the input signal, but it does not reach its peak at the same time, nor does it pass through zero at the same time. You can see this when you compare the $V_{out}$ curves to the $V_{in}$ curves in Figure 6-14.

Figure 6-14

**NOTE** The numbered graphs in Figure 6-14 are produced by the corresponding numbered circuits in Figure 6-13.

Questions
A. Examine graph (1). Is the output voltage peak displaced to the right or the left?

B. Examine graph (2). Is the output voltage peak displaced to the right or the left?
The output voltage waveform in graph (1) of Figure 6-14 is said to lead the input voltage waveform. The output waveform in graph (2) is said to lag the input waveform. The amount that $V_{out}$ leads or lags $V_{in}$ is measured in degrees. There are 90 degrees between the peak of a sine wave and a point at which the sine wave crosses zero volts. You can use this information to estimate the number of degrees $V_{out}$ is leading or lagging $V_{in}$. The difference between these two waveforms is called a phase shift or phase difference.

Questions

A. What is the approximate phase shift of the two waveforms shown in the graphs?

B. Do you think that the phase shift depends on the value of frequency?

C. Will an RC voltage divider with the voltage taken across the capacitor produce a lead or a lag in the phase shift of the output voltage?

Answers

A. Approximately 35 degrees.

B. It does depend upon frequency because the values of the reactance and impedance depend upon frequency.

C. A lag as shown in graph (2).

The current through a capacitor is out of phase with the voltage across the capacitor. The current leads the voltage by 90 degrees. The current and voltage across a resistor are in phase, that is, they have no phase difference.
Figure 6-15 shows the vector diagram for a series RC circuit. $\theta$ is the phase angle by which $V_R$ leads $V_{in}$. $\phi$ is the phase angle by which $V_C$ lags $V_{in}$.

\[ \tan \theta = \frac{V_C}{V_R} = \frac{1}{2\pi fRC} = \frac{X_C}{R} \]

As an example, calculate the phase angle when 160 Hz is applied to a 3.9 k$\Omega$ resistor in series with a 0.1 $\mu$F capacitor.

\[ \tan \theta = \frac{1}{2 \times \pi \times 160 \times 3.9 \times 10^3 \times 0.1 \times 10^{-6}} = 2.564 \]

You can calculate the inverse tangent of 2.564 on your calculator and find that the phase angle is 68.7 degrees, which means that $V_R$ leads $V_{in}$ by 68.7 degrees. This also means that $V_C$ lags the input by 21.3 degrees.

In electronics, the diagram shown in Figure 6-15 is called a phasor diagram, but the mathematics involved is the same as for vector diagrams, with which you should be familiar.

**Question**

Sketch a phasor diagram using the angles $\theta$ and $\phi$ resulting from the calculations in this problem. Use a separate sheet of paper for your diagram.
Answer

See Figure 6-16. Note that the phasor diagram shows that the magnitude of \( V_C \) is greater than \( V_R \).

\[ \theta = 68.7^\circ \]
\[ \phi = 21.3^\circ \]

Figure 6-16

24 Using the component values and input signal shown in Figure 6-17, find the following.

\[ V_{in} \]
\[ 6 \Omega \]
\[ 10 \text{ V}_{pp} \]
\[ 60 \text{ Hz} \]
\[ 330 \mu F \]

Figure 6-17

Questions

A. \( X_C \): 

B. \( Z \): 

C. \( V_{out} \):
Phase Shift of an RC Circuit

D. $V_R$: 

E. The current flowing through the circuit:

F. The phase angle:

Answers

A. $X_C = \frac{1}{2\pi fC} = 8\,\text{ohms}$

B. $Z = \sqrt{8^2 + 6^2} = 10\,\text{ohms}$

C. $V_{out} = V_C = V_{in} \times \frac{X_C}{Z} = 8\,\text{V}$

D. $V_R = V_{in} \times \frac{R}{Z} = 6\,\text{V}$

E. $I = \frac{V}{Z} = \frac{10\,V_{pp}}{10\,\Omega} = 1\,\text{amp}$

F. $\tan \theta = \frac{X_C}{R} = \frac{8\,\Omega}{6\,\Omega} = 1.33.$

Therefore, $\theta \approx 53.13$ degrees.

For the circuit shown in Figure 6-18, calculate the following parameters.

![Figure 6-18](image)
Questions

A. \( X_C \):

B. \( Z \):

C. \( V_{out} \):

D. \( V_R \):

E. The current flowing through the circuit:

F. The phase angle:

Answers

A. \( X_C = 265 \) ohms
B. \( Z = \sqrt{175^2 + 265^2} = 317.57 \) \( \Omega \)
C. \( V_C = 125 \) V
D. \( V_R = 83 \) V
E. \( I = 0.472 \) A
F. \( \tan \theta = \frac{265 \Omega}{175 \Omega} = 1.5 \)

Therefore, \( \theta = 56.56 \) degrees.

Resistor and Capacitor in Parallel

The circuit in Figure 6-19 is a common variation on the low pass filter circuit introduced in problem 15.
Because a DC signal will not pass through the capacitor, this circuit functions like the circuit shown in Figure 6-20 for DC input signals.

An AC signal will pass through both the capacitor and R2. You can treat the circuit as if it had a resistor with a value of \( r \), where \( r \) is the parallel equivalent of \( R_2 \) and \( X_C \), in place of the parallel capacitor and resistor. This is shown in Figure 6-21.

Calculating the exact parallel equivalent (\( r \)) is very complicated and beyond the scope of this book. However, to demonstrate the usefulness of this circuit let’s make a major simplification. Consider a circuit where \( X_C \) is only about one tenth the value of \( R_2 \) or less. This circuit has many practical applications, because it will attenuate the AC and the DC differently.

The following example will help to clarify this. For the following circuit, calculate the AC and DC output voltages separately.

For the circuit shown in Figure 6-22, you can calculate the AC and DC output voltages separately by the steps outlined in the following questions.
\[ \text{Questions} \]

A. Find \( X_C \). Check that it is less than one tenth of \( R_2 \).

\[ X_C = \] 

B. For the circuit in Figure 6-22, determine which circuit components DC signals will flow through. Then use the voltage divider formula to find DC \( V_{\text{out}} \).

\[ \text{DC } V_{\text{out}} = \]

C. For the circuit in Figure 6-22 determine which circuit components AC signals will flow through. Then use the voltage divider formula to find AC \( V_{\text{out}} \).

\[ \text{AC } V_{\text{out}} = \]

D. Compare the AC and DC input and output voltages.

\[ \text{Answers} \]

A. \( X_C = 106 \text{ ohms} \) and \( R_2 = 1000 \text{ ohms} \), so \( X_C \) is close enough to one tenth of \( R_2 \).

B. The portion of the circuit that a DC signal passes through is shown in Figure 6-23.

\[ V_{\text{out}} = 20 \times \frac{1 \text{ k}\Omega}{1 \text{ k}\Omega + 1 \text{ k}\Omega} = 10 \text{ V} \]

\[ \text{Figure 6-23} \]
C. The portion of the circuit that an AC signal passes through is shown in Figure 6-24.

\[ V_{\text{out}} = 10 \times \frac{10^6}{\sqrt{(1000)^2 + (10^6)^2}} = 1.05 \text{ V} \]

![Figure 6-24](image)

D. Figure 6-25 shows the input waveform on the left and the output waveform on the right. You can see from the waveforms that the DC voltage has dropped from 20 V to 10 V, and that the AC voltage has dropped from 10 V to 1.05 V.

![Figure 6-25](image)

Figure 6-26 shows two versions of the circuit discussed in problem 26 with changes to the value of the capacitor or the frequency of the input signal. The input voltage in both cases is 20 Vpp. Use the same steps shown in problem 26 to find and compare the output voltages with the input voltages for the two circuits shown in Figure 6-26.

![Figure 6-26](image)
Questions

1. A. \( X_C = \)  
   B. DC \( V_{out} = \)  
   C. AC \( V_{out} = \)  
   D. Attenuation:  

2. A. \( X_C = \)  
   B. DC \( V_{out} = \)  
   C. AC \( V_{out} = \)  
   D. Attenuation:  

Answers

1. A. \( X_C = 10.6 \) ohms.  
   B. DC \( V_{out} = 10 \) V.  
   C. AC \( V_{out} = 0.1 \) V.  
   D. Here, the DC attenuation is the same as the example in problem 26, but the AC output voltage is reduced because of the higher frequency.  

2. A. \( X_C = 10.6 \) ohms.  
   B. DC \( V_{out} = 10 \) V.  
   C. AC \( V_{out} = 0.1 \) V.  
   D. The DC attenuation is still the same, but the AC output voltage is reduced because of the larger capacitor.  

Inductors in AC Circuits

28 Figure 6-27 shows a voltage divider circuit using an inductor, rather than a capacitor.

\[ V_{in} \quad L \quad V_{out} \]

\[ R \]

Figure 6-27
As with previous problems, consider all the inputs to be pure sine waves. Like the capacitor, the inductor cannot change the frequency of a sine wave, but it can reduce the amplitude of the output voltage.

The simple circuit, as shown in Figure 6-27, opposes current flow.

Questions

A. What is the opposition to current flow called?

B. What is the formula for the reactance of the inductor?

C. Write out the formula for the opposition to the current flow for this circuit.

Answers

A. Impedance.

B. $X_L = 2\pi fL$.

C. $Z = \sqrt{X_L^2 + R^2}$

In many cases, the DC resistance of the inductor is very low, so assume that it is 0 ohms. For the next two problems make that assumption in performing your calculations.

You can calculate the voltage output for the circuit shown in Figure 6-28 with the voltage divider formula.

Figure 6-28
Question

What is the formula for $V_{out}$?

---

Answer

$$V_{out} = V_{in} \times \frac{R}{Z}$$

---

Find the output voltage for the circuit shown in Figure 6-29.

Figure 6-29

Use the steps in the following questions to perform the calculation.

Questions

A. Find the DC output voltage. Use the DC voltage divider formula.
   $$DC \ V_{out} =$$

B. Find the reactance of the inductor.
   $$X_L =$$

C. Find the AC impedance.
   $$Z =$$

D. Find the AC output voltage.
   $$AC \ V_{out} =$$

E. Combine the outputs to find the actual output. Draw the output waveform and label the voltage levels of the waveform on the blank graph in Figure 6-30.
Inductors in AC Circuits

Answers

A. DC $V_{out} = 10\, V \times \frac{1\, k\Omega}{1\, k\Omega + 0} = 10\, V$

B. $X_L = 1\, k\Omega$ (approximately).

C. $Z = \sqrt{1^2 + 1^2} = \sqrt{2} = 1.414\, k\Omega$

D. AC $V_{out} = 2V_{pp} \times \frac{1\, k\Omega}{1.414\, k\Omega} = 1.414\, V_{pp}$

E. The output waveform is shown in Figure 6-31.

For the circuit shown in Figure 6-32, the DC resistance of the inductor is large enough that you should include that value in your calculations.

For the circuit shown in Figure 6-32, the DC resistance of the inductor is large enough that you should include that value in your calculations.

Figure 6-30

Figure 6-31

Figure 6-32
Questions

For the circuit shown in Figure 6-32, calculate the DC and AC output voltages, using the steps listed in problem 30.

A. DC \( V_{\text{out}} \) =

B. \( X_L \) =

C. \( Z \) =

D. AC \( V_{\text{out}} \) =

E. Draw the output waveform and label the voltage levels of the waveform on the blank graph in Figure 6-33.

Figure 6-33

Answers

A. DC \( V_{\text{out}} \) = \( 10V \times \frac{1\text{k}\Omega}{(1\text{k}\Omega + 500\Omega)} = 6.67 \text{V} \)

**NOTE** The 500 \( \Omega \) DC resistance of the inductor has been added to the 1 k\( \Omega \) resistor value in this calculation.

B. \( X_L \) = 2 k\( \Omega \),

C. \( Z = \sqrt{1.5^2 + 2^2} = 2.5 \text{k}\Omega \)

**NOTE** The 500 \( \Omega \) DC resistance of the inductor has been added to the 1 k\( \Omega \) resistor value in this calculation.

D. AC \( V_{\text{out}} \) = 1.6 \( V_{\text{pp}} \),
7.47
6.67
5.87

Figure 6-34

E. See Figure 6-34.

To calculate $V_{\text{out}}$, in problems 30 and 31, you also had to calculate $X_L$. However, because $X_L$ changes with the frequency of the input signal, the impedance and the amplitude of $V_{\text{out}}$ also change with the frequency of the input signal. Plotting the output voltage $V_{\text{out}}$ against frequency results in the curve shown in Figure 6-35.

![Figure 6-35](image)

The values of the inductor and resistor determine the frequency at which $V_{\text{out}}$ starts to drop ($f_1$) and the frequency at which $V_{\text{out}}$ levels off ($f_2$).

The curve in Figure 6-35 shows that using an inductor and resistor in a circuit such as the one shown in Figure 6-29 produces a low pass filter similar to the one discussed in problems 15 through 19.

**Question**

What values will control $f_1$ and $f_2$?
Answer

The values of the inductor and the resistor

You can also create a circuit as shown in Figure 6-36, in which the output voltage is equal to the voltage drop across the inductor.

Figure 6-36

Questions

A. What formula would you use to find $V_{\text{out}}$?

B. If you plot the output voltage versus the frequency, what would you expect the curve to be? Use a separate sheet of paper to draw your answer.

Answers

A. $V_{\text{out}} = V_{\text{in}} \times \frac{X_L}{Z}$

B. See Figure 6-37.
The curve in Figure 6-37 demonstrates that using an inductor and resistor in a circuit, such as the one shown in Figure 6-36, produces a high pass filter similar to the one discussed in problems 6 through 13.

**Phase Shift for an RL Circuit**

Filter circuits that use inductors (such as those shown in Figure 6-38) produce a phase shift in the output signal, just as filter circuits containing capacitors do. You can see the shifts for the circuits shown in Figure 6-38 by comparing the input and output waveforms shown below the circuit diagrams.

\[
\frac{V_{\text{in}}}{V_{\text{out}}} = \frac{V_R}{R} \quad (1)
\]

\[
\frac{V_{\text{in}}}{V_{\text{out}}} = \frac{V_L}{L} \quad (2)
\]

**Figure 6-38**

*Question*

In which circuit does the output voltage lead the input voltage?

*Answer*

In graph (1), the output voltage lags the input voltage, and in graph (2) the output voltage leads.

*Figure 6-39* shows a vector diagram for both the circuits shown in Figure 6-38. The current through the inductor lags the voltage across the inductor by 90 degrees.
The phase angle is easily found:
\[
\tan \theta = \frac{V_L}{V_R} = \frac{X_L}{R} = \frac{2\pi fL}{R}
\]

**Question**

Calculate the phase angle for the circuit discussed in problem 30.

**Answer**

45 degrees

Refer to the circuit discussed in problem 31.

**Question**

Calculate the phase angle.

**Answer**

\[
\tan \theta = \frac{X_L}{R} = \frac{2\ k\Omega}{1.5\ k\Omega} = 1.33
\]

Therefore \(\theta = 53.1\) degrees.

**Summary**

This chapter has discussed the uses of capacitors, resistors, and inductors in voltage divider and filter circuits. You learned how to determine the following:
■ The output voltage of an AC signal after it passes through a high pass RC filter circuit
■ The output voltage of an AC signal after it passes through a low pass RC circuit
■ The output voltage of an AC signal after it passes through a high pass RL circuit
■ The output voltage of an AC signal after it passes through a low pass RL circuit
■ The output waveform of an AC or combined AC-DC signal after it passes through a filter circuit
■ Simple phase angles and phase differences

Self-Test

These questions test your understanding of this chapter. Use a separate sheet of paper for your calculations. Compare your answers with the answers provided following the test.

For questions 1–3, calculate the following parameters for the circuit shown in each question.

A. \( X_C \)
B. \( Z \)
C. \( V_{\text{out}} \)
D. \( I \)
E. \( \tan \theta \) and \( \theta \)

1. Use the circuit shown in Figure 6-40.

![Figure 6-40](image)

A. ________________________
B. ________________________
C. ________________________

\( C = 0.053 \, \mu F \)
\( V_{\text{in}} = 10 \, V_{pp} \)
\( 1 \, \text{kHz} \)
\( R = 4 \, k\Omega \)
2. Use the circuit shown in Figure 6-41.

![Figure 6-41](image)

For questions 4–6, calculate the following parameters for the circuit shown in each question.

A. $X_C$
B. AC $V_{out}$
C. DC $V_{out}$
4. Use the circuit shown in Figure 6-43.

![Figure 6-43](image)

**A.**

**B.**

**C.**

5. Use the circuit shown in Figure 6-44.

![Figure 6-44](image)

**A.**

**B.**

**C.**

6. Use the circuit shown in Figure 6-45.

![Figure 6-45](image)

**A.**

**B.**

**C.**

For questions 7–9, calculate the following parameters for the circuit shown in each question.
202 Chapter 6 = AC in Electronics

A. DC $V_{out}$
B. $X_L$
C. $Z$
D. AC $V_{out}$
E. $\tan \theta$ and $\theta$

7. Use the circuit shown in Figure 6-46.

![Figure 6-46](image)

A. ________________
B. ________________
C. ________________
D. ________________
E. ________________

8. Use the circuit shown in Figure 6-47.

![Figure 6-47](image)

A. ________________
B. ________________
C. ________________
9. Use the circuit shown in Figure 6-48.

**Figure 6-48**

A. 

B. 

C. 

D. 

E. 

**Answers to Self-Test**

If your answers do not agree with those provided here, review the applicable problems in this chapter before you go on to the next chapter.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A. 3 kΩ</td>
<td>problems 8, 9, 10, 23</td>
</tr>
<tr>
<td></td>
<td>B. 5 kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. 8 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. 2A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. 36.87 degrees</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>A. 40 ohms</td>
<td>problems 8, 9, 23</td>
</tr>
<tr>
<td></td>
<td>B. 50 ohms</td>
<td></td>
</tr>
</tbody>
</table>
### Problem Solutions

1. **A.** 5 ohms problems 8, 9, 23  
**B.** 13 ohms  
**C.** 10 V  
**D.** 2A  
**E.** 53.13 degrees

2. **A.** 50 V  
**B.** 2A  
**C.** 53.13 degrees

3. **A.** 5 ohms problems 8, 9, 23  
**B.** 13 ohms  
**C.** 10 V  
**D.** 2A  
**E.** 22.63 degrees

4. **A.** 10 ohms problems 26 and 27  
**B.** 1 V  
**C.** 10 V

5. **A.** 4 ohms problems 26 and 27  
**B.** 0.4 V  
**C.** 10 V

6. **A.** 64 ohms problems 26 and 27  
**B.** 5.4 V  
**C.** 9.1 V

7. **A.** 9 V problems 28–30, 35  
**B.** 3 ohms  
**C.** 10.4 ohms  
**D.** 2.7 V  
**E.** 16.7 degrees

8. **A.** 10 V problems 28–30, 35  
**B.** 904 ohms  
**C.** 910 ohms  
**D.** 1 V  
**E.** 83.69 degrees
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>A.</td>
<td>0 V problems 28–30, 35</td>
</tr>
<tr>
<td></td>
<td>B.</td>
<td>1 kΩ</td>
</tr>
<tr>
<td></td>
<td>C.</td>
<td>1.414 kΩ</td>
</tr>
<tr>
<td></td>
<td>D.</td>
<td>5 V</td>
</tr>
<tr>
<td></td>
<td>E.</td>
<td>45 degrees</td>
</tr>
</tbody>
</table>
You have seen how the inductor and the capacitor each present an opposition to the flow of an AC current, and how the magnitude of this reactance depends upon the frequency of the applied signal.

When inductors and capacitors are used together, in series or in parallel, a useful phenomenon called resonance occurs. Resonance is the frequency at which the reactance of the capacitor and the inductor is equal.

In this chapter, you learn about some of the properties of resonant circuits, and concentrate on those properties that lead to the study of oscillators (which is touched upon in the last few problems in this chapter, and covered in more depth in Chapter 9).

After completing this chapter you will be able to do the following:

- Find the impedance of a series LC circuit.
- Calculate the series LC circuit’s resonant frequency.
- Sketch a graph of the series LC circuit’s output voltage.
- Find the impedance of a parallel LC circuit.
- Calculate the parallel LC circuit’s resonant frequency.
- Sketch a graph of the parallel LC circuit’s output voltage.
- Calculate the bandwidth and the Q of simple series and parallel LC circuits.
- Calculate the frequency of an oscillator.
The Capacitor and Inductor in Series

Many electronic circuits contain a capacitor and an inductor placed in series, as shown in Figure 7-1.

Figure 7-1

You can combine a capacitor and an inductor in series with a resistor to form voltage divider circuits, such as the two circuits shown in Figure 7-2. A circuit that contains resistance (R), inductance (L), and capacitance (C) is referred to as an RLC circuit. Note that although the order of the capacitor and inductor differs in the two circuits shown in Figure 7-2, in fact, they have the same effect on electrical signals.

Figure 7-2

To simplify your calculations in the next few problems you can assume that the small DC resistance of the inductor is much less than the resistance of the resistor R, and you can, therefore, ignore DC resistance in your calculations.

When you apply an AC signal to the circuits in Figure 7-2, both the inductor’s and the capacitor’s reactance value depends on the frequency.

Questions

A. What formula would you use to calculate the inductor’s reactance?

B. What formula would you use to calculate the capacitor’s reactance?
Answers

A. \( X_L = 2\pi fL \)

B. \( X_C = \frac{1}{2\pi fC} \)

2. You can calculate the net reactance (\( X \)) of a capacitor and inductor in series using the following formula:

\[ X = X_L - X_C \]

You can calculate the impedance of the RLC circuits shown in Figure 7-2 using the following formula:

\[ Z = \sqrt{R^2 + X^2} \]

In the formula, keep in mind that \( X^2 \) is \( (X_L + X_C)^2 \).

Calculate the net reactance and impedance for an RLC series circuit, such as those shown in Figure 7-2, with the following values:

\( f = 1 \text{ kHz} \)

\( L = 100 \text{ mH} \)

\( C = 1 \mu F \)

\( R = 500 \text{ ohms} \)

Questions

Follow these steps to calculate the following:

A. Find \( X_L \):

B. Find \( X_C \):

C. Use \( X = X_L - X_C \) to find the net reactance:

D. Use \( Z = \sqrt{X^2 + R^2} \) to find the impedance:


210  Chapter 7  ■  Resonant Circuits

**Answers**

A. $X_L = 628$ ohms
B. $X_C = 160$ ohms
C. $X = 468$ ohms (inductive)
D. $Z = 685$ ohms

3  Calculate the net reactance and impedance for an RLC series circuit, such as those shown in Figure 7-2, using the following values:

$f = 100$ Hz
$L = 0.5$ H
$C = 5$ µF
$R = 8$ ohms

**Questions**

Follow the steps outlined in problem 2 to calculate the following parameters:

A. $X_L =$
B. $X_C =$
C. $X =$
D. $Z =$

**Answers**

A. $X_L = 314$ ohms
B. $X_C = 318$ ohms
C. $X = -4$ ohms (capacitive)
D. $Z = 9$ ohms

By convention, the net reactance is negative when it is capacitive.

4  Calculate the net reactance and impedance for an RLC series circuit, such as those shown in Figure 7-2, using the following values.

**Questions**

A. $f = 10$ kHz, $L = 15$ mH, $C = 0.01$ µF, $R = 494$ ohms

$X =$

$Z =$
The Capacitor and Inductor in Series 211

B. \( f = 2 \text{ MHz}, L = 8 \mu \text{H}, C = 0.001 \mu \text{F}, R = 15 \text{ ohms} \)

\[
X = \text{__________________________} \\
Z = \text{__________________________}
\]

Answers

A. \( X = -650 \text{ ohms} \) (capacitive), \( Z = 816 \text{ ohms} \)

B. \( X = 21 \text{ ohms} \) (inductive), \( Z = 25.8 \text{ ohms} \)

For the circuit shown in Figure 7-3, the output voltage is the voltage drop across the resistor.

![Figure 7-3](image)

In problems 1 through 4, the net reactance of the series inductor and capacitor changes as the frequency changes. Therefore, as the frequency changes, the voltage drop across the resistor changes, and so also does the amplitude of the output voltage \( V_{out} \).

If you plot \( V_{out} \) against frequency on a graph for the circuit shown in Figure 7-3, the curve looks like the one shown in Figure 7-4.

![Figure 7-4](image)
The maximum output voltage (or peak voltage) shown in this curve, \( V_p \), is slightly less than \( V_in \). This slight attenuation of the peak voltage from the input voltage is because of the DC resistance of the inductor.

The output voltage peaks at a frequency, \( f_r \), where the net reactance of the inductor and capacitor in series is at its lowest value. At this frequency, there is very little voltage drop across the inductor and capacitor. Therefore, most of the input voltage is applied across the resistor, and the output voltage is at its highest value.

**Question**

Under ideal conditions, if \( X_C \) were 10.6 ohms, what value of \( X_L \) results in a net reactance (\( X \)) of 0 for the circuit shown in Figure 7-3?

**Answer**

\[
X = X_L - X_C = 0 \quad \text{therefore:}
\]

\[
X_L = X_C + X = 10.6 \, \Omega + 0 = 10.6 \, \Omega
\]

You can find the frequency at which \( X_L - X_C = 0 \) by setting the formula for \( X_L \) equal to the formula for \( X_C \) and solving for \( f \):

\[
2\pi f L = \frac{1}{2\pi f C}
\]

Therefore,

\[
f_r = \frac{1}{2\pi \sqrt{LC}}
\]

where \( f_r \) is the resonant frequency of the circuit.

**Question**

What effect does the value of the resistance have on the resonant frequency?

**Answer**

It has no effect at all.

Calculate the resonant frequency for the circuit shown in Figure 7-3 using the capacitor and inductor values given in the following questions.
The Capacitor and Inductor in Series 213

Questions
A. \( C = 1 \ \mu \text{F}, \ L = 1 \ \text{mH} \)
   \[ f_r = \frac{1}{2\pi \sqrt{1 \times 10^{-3} \times 1 \times 10^{-6}}} = 5.0 \text{kHz} \]
B. \( C = 16 \ \mu \text{F}, \ L = 1.6 \ \text{mH} \)
   \[ f_r = \frac{1}{2\pi \sqrt{16 \times 10^{-6} \times 1.6 \times 10^{-3}}} = 1 \text{kHz} \]

Answers
A. \( f_r = \frac{1}{2\pi \sqrt{1 \times 10^{-3} \times 1 \times 10^{-6}}} = 5.0 \text{kHz} \)
B. \( f_r = \frac{1}{2\pi \sqrt{16 \times 10^{-6} \times 1.6 \times 10^{-3}}} = 1 \text{kHz} \)

For the RLC circuit shown in Figure 7-3 using the capacitor and inductor values given in the following questions.

Questions
A. \( C = 0.1 \ \mu \text{F}, \ L = 1 \ \text{mH} \)
   \[ f_r = \frac{1}{2\pi \sqrt{1 \times 10^{-3} \times 1 \times 10^{-6}}} = 16 \text{kHz} \]
B. \( C = 1 \ \mu \text{F}, \ L = 2 \ \text{mH} \)
   \[ f_r = \frac{1}{2\pi \sqrt{16 \times 10^{-6} \times 1.6 \times 10^{-3}}} = 3.6 \text{kHz} \]

Answers
A. \( f_r = 16 \text{ kHz} \)
B. \( f_r = 3.6 \text{ kHz} \)

For the RLC circuit shown in Figure 7-5, the output voltage is the voltage drop across the capacitor and inductor.

\[ V_{\text{in}} \quad \text{\bigcirc} \quad V_{\text{out}} \]

Figure 7-5
If $V_{\text{out}}$ is plotted on a graph against the frequency for the circuit shown in Figure 7-5, the curve looks like that shown in Figure 7-6.

![Figure 7-6](image)

The output voltage drops to its minimum value at the resonant frequency for the circuit, which you can calculate with the formula provided in problem 6. At the resonant frequency, the net reactance of the inductor and capacitor in series is at a minimum. Therefore, there is very little voltage drop across the inductor and capacitor, and the output voltage is at its minimum value.

**Questions**

What would you expect the minimum output voltage to be?

**Answers**

0 V, or close to it

You can connect the capacitor and inductor in parallel, as shown in Figure 7-7.

![Figure 7-7](image)

You can calculate the resonance frequency of this circuit using the following formula:

$$f_r = \frac{1}{2\pi \sqrt{LC}} \sqrt{1 - \frac{r^2C}{L}}$$
In this formula, \( r \) is the DC resistance of the inductor. However, if the reactance of the inductor is equal to or more than 10 times the DC resistance of the inductor, you can use the following simpler formula. This is the same formula that you used in problems 7 and 8 for the series circuit.

\[
f_r = \frac{1}{2\pi \sqrt{LC}}
\]

The symbol \( Q \) is equal to \( \frac{X_L}{r} \). Therefore, you can use this simple equation to calculate \( f_r \) if \( Q \) is equal to, or greater than, 10.

**Questions**

A. Which formula should you use to calculate the resonant frequency of a parallel circuit if the \( Q \) of the coil is 20?

B. If the \( Q \) is 8?

**Answers**

A. \( f_r = \frac{1}{2\pi \sqrt{LC}} \)

B. \( f_r = \frac{1}{2\pi \sqrt{LC}} \sqrt{1 - \frac{r^2 C}{L}} \)

**NOTE** Here is another version of the resonance frequency formula that is helpful when \( Q \) is known:

\[
f_r = \frac{1}{2\pi \sqrt{LC}} \sqrt{\frac{Q^2}{1 + Q^2}}
\]

You can calculate the total opposition (impedance) of an inductor and capacitor connected in parallel to the flow of current by using the following formulas for a circuit at resonance:

\[ Z_p = Qr, \text{ if } Q \text{ is equal to or greater than 10} \]

\[ Z_p = \frac{L}{rC}, \text{ for any value of } Q \]
216 Chapter 7 = Resonant Circuits

At resonance, the impedance of an inductor and capacitor in parallel is at its maximum.
You can use an inductor and capacitor in parallel in a voltage divider circuit, as shown in Figure 7-8.

![Figure 7-8](image)

If $V_{out}$ is plotted against frequency on a graph for the circuit shown in Figure 7-8, the curve looks like that shown in Figure 7-9.

![Figure 7-9](image)

**Questions**

A. What would be the total impedance formula for the voltage divider circuit at resonance?

B. What is the frequency called at the point where the curve is at its lowest point?

C. Why is the output voltage at a minimum value at resonance?
The Capacitor and Inductor in Series 217

Answers

A. \( Z_T = Z_p + R \)

**NOTE** The relationship shown by this formula is only true at resonance. At all other frequencies, \( Z_T \) is a complicated formula or calculation found by considering a series \( r, L \) circuit in parallel with a capacitor.

B. The parallel resonant frequency

C. The output voltage is at its lowest value at the resonant frequency. This is because the impedance of the parallel resonant circuit is at its highest value at this frequency.

12 For the circuit shown in Figure 7-10, the output voltage equals the voltage drop across the inductor and capacitor.

![Figure 7-10](image)

Figure 7-10

If \( V_{out} \) is plotted on a graph against frequency for the circuit shown in Figure 7-10, the curve looks like that shown in Figure 7-11. At the resonance frequency, the impedance of the parallel inductor and capacitor is at its maximum value. Therefore, the voltage drop across the parallel inductor and capacitor (which is also the output voltage) is at its maximum value.

![Figure 7-11](image)
**Question**

What formula would you use to calculate the resonant frequency?

**Answer**

\[
fr = \frac{1}{2\pi\sqrt{LC}} \quad \text{if } Q \text{ is equal to or greater than } 10
\]

\[
fr = \frac{1}{2\pi\sqrt{LC}} \sqrt{1 - \frac{r^2C}{L}} \quad \text{if } Q \text{ is less than } 10
\]

13. Find the resonant frequency in these two examples, where the capacitor and the inductor are in parallel. (Q is greater than 10.)

**Questions**

A. \( L = 5 \text{ mH}, C = 5 \mu\text{F} \)

\[fr = \quad \text{______________} \]

B. \( L = 1 \text{ mH}, C = 10 \mu\text{F} \)

\[fr = \quad \text{______________} \]

**Answers**

A. \( fr = 1 \text{ kHz} \) (approximately)

B. \( fr = 1600 \text{ Hz} \) (approximately)

**The Output Curve**

14. Now it’s time to look at the output curve in a little more detail. Take a look at the curve shown in Figure 7-12 for an example.

An input signal at the resonant frequency, \( f_r \), passes through a circuit with minimum attenuation and with its output voltage equal to the peak output voltage, \( V_p \), shown on this curve.

The two frequencies \( f_1 \) and \( f_2 \) are “passed” almost as well as \( f_r \) is passed. That is, signals at those frequencies have a high output voltage, almost as high as the output of a signal at \( f_r \). The graph shows this voltage as \( V_x \).

Signals at frequencies \( f_3 \) and \( f_4 \) have a very low output voltage.
These two frequencies are not passed, but are said to be blocked or rejected by the circuit. This output voltage is shown on the graph as $V_z$.

The output or frequency response curve for a resonant circuit (series or parallel) has a symmetrical shape for a high value of $Q$. You can make the assumption that the output curve is symmetrical when $Q$ is greater than 10.

Questions

A. What is meant by a frequency that is passed?

B. Why are $f_1$ and $f_2$ passed almost as well as $f_r$?

C. What is meant by a frequency that is blocked?

D. Which frequencies shown on the previous output curve are blocked?

E. Does the output curve shown appear to be symmetrical? What does this mean with regard to the circuit?

Answers

A. It appears at the output with minimum attenuation.
B. Because their frequencies are close to $f_r$.
C. It has a low output voltage.
D. $f_3$ and $f_4$ (as well as all frequencies below $f_3$ and above $f_4$).
E. It does appear to be symmetrical. This means that the coil has a $Q$ greater than 10.

Somewhere between $f_r$ and $f_3$, and between $f_r$ and $f_4$, there is a point at which frequencies are said to be either passed or reduced to such a level that it is effectively blocked. The dividing line is at the level at which the power output of the circuit is half as much as the power output at peak value. This happens to occur at a level that is 0.707, or 70.7 percent of the peak value. For the output curve shown in problem 14, this occurs at a voltage level of 0.707 $V_p$. The two corresponding frequencies taken from the graph are called the half power frequencies or half power points. These are common expressions used in the design of resonant circuits and frequency response graphs.

If a certain frequency results in an output voltage that is equal to or greater than the half power point, it is said to be passed or accepted by the circuit. If it is lower than the half power point, it is said to be blocked or rejected by the circuit.

**Question**

Suppose $V_p = 10$ V. What is the minimum voltage level of all frequencies that are passed by the circuit?

**Answer**

$$V = 10 \text{ V} \times 0.707 = 7.07 \text{ V}$$

(If a frequency has an output voltage above 7.07 V, we would say it is passed by the circuit.)

Assume the resonant frequency in a circuit is 5 V. Another frequency has an output of 3.3 V.

**Question**

Is this second frequency passed or blocked by the circuit?
Answer

\[ V = V_p \times 0.707 = 5 \times 0.707 = 3.535 \text{V} \]

3.3 V is less than 3.535 V, so this frequency is blocked.

17 In these examples, find the voltage level at the half power points.

Questions

A. \( V_p = 20 \text{ V} \)

B. \( V_p = 100 \text{ V} \)

C. \( V_p = 3.2 \text{ V} \)

Answers

A. 14.14 V

B. 70.70 V

C. 2.262 V

18 Although this discussion started off by talking about the resonance frequency, a few other frequencies have been introduced. In fact, at this point, the discussion is dealing with a band or a range of frequencies.

There are two frequencies that correspond to the half power points on the curve. Assume these frequencies are \( f_1 \) and \( f_2 \). The difference you find when you subtract \( f_1 \) from \( f_2 \) is very important, because this gives the range of frequencies that are passed by the circuit. This range is called the bandwidth of the circuit, and can be calculated using the following equation.

\[ BW = f_2 - f_1 \]

All frequencies within the bandwidth are passed by the circuit, while all frequencies outside the bandwidth are blocked. A circuit with this type of output (such as the circuit shown in Figure 7-10) is referred to as a bandpass filter.

Question

Indicate which of the following pairs of values represent a wider range of frequencies, or, in other words, the wider bandwidth.

A. \( f_2 = 200 \text{ Hz}, f_1 = 100 \text{ Hz} \)

B. \( f_2 = 20 \text{ Hz}, f_1 = 10 \text{ Hz} \)
Answer

The bandwidth is wider for the frequencies given in A.

When playing a radio, you listen to one station at a time, not to the adjacent stations on the dial. Thus, your radio tuner must have a narrow bandwidth so that it can select only the frequency of that one station.

The amplifiers in a television set, however, must pass frequencies from 30 Hz up to about 4.5 MHz, which requires a wider bandwidth. The application or use to which you’ll put a circuit determines the bandwidth that you should design the circuit to provide.

The output curve for a circuit that passes a band of frequencies around the resonance frequency (such as the curve shown in Figure 7-13) was discussed in the last few problems.

![Figure 7-13](image1)

The same principles and equations apply to the output curve for a circuit that blocks a band of frequencies around the resonance frequency, as is the case with the curve shown in Figure 7-14.

![Figure 7-14](image2)

A circuit with this type of output (such as the circuit shown in Figure 7-8) is called a notch filter, or band-reject filter.
Questions

A. What points on the curve shown in Figure 7-14 would you use to determine the circuit’s bandwidth?

B. Would the output voltage at the resonant frequency be above or below these points?

Answers

A. The half power points (0.707 V out(max))

B. The output voltage at the resonant frequency is the minimum point on the curve, which is below the level for the half power points.

You can find the bandwidth of a circuit by measuring the frequencies (f₁ and f₂) at which the half power points occur, and then using the following formula:

\[ BW = f₂ - f₁ \]

Or, you can calculate the bandwidth of a circuit using this formula:

\[ BW = \frac{f_r}{Q} \]

where:

\[ Q = \frac{X_L}{R} \]

The formula used to calculate bandwidth indicates that, for two circuits with the same resonant frequency, the circuit with the larger Q will have the smaller bandwidth.

When you calculate Q for a circuit containing a capacitor and inductor in series (such as that shown in Figure 7-15) use the total DC resistance – the sum of the DC resistance (r) of the inductor and the value of the resistor (R) – to calculate Q.

Figure 7-15
When you calculate \( Q \) for a circuit containing an inductor and capacitor in parallel, as with the circuit shown in Figure 7-16, you do not include the value of the resistor (\( R \)) in the calculation. The only resistance you use in the calculation is the DC resistance (\( r \)) of the inductor.

\[ r = \text{DC resistance of inductor} \]

\[ R \text{ (external resistor)} \]

**Figure 7-16**

When you calculate \( Q \) for a circuit containing an inductor, capacitor, and resistor in parallel, as with the two circuits shown in Figure 7-17, include the value of the resistor (\( R \)) in the calculation.

**Figure 7-17**

**Questions**

For the circuit shown in Figure 7-18, all the component values are provided in the diagram. Find \( f_r, Q, \) and \( BW \).

\[ f_r = \frac{1}{2\pi \sqrt{LC}} \]

\[ Q = \frac{1}{2\pi \sqrt{250 \times 10^{-6} \times 160 \times 10^{-12}}} = 796 \text{ kHz} \]

**Answers**
Use the circuit and component values shown in Figure 7-19 to answer the following questions.

\[ Q = \frac{X_L}{R} = \frac{2\pi fL}{R} = \frac{2\pi \times 796 \text{ kHz} \times 250 \mu \text{H}}{12.6 \Omega} = 99.2 \]

\[ \text{BW} = \frac{f_r}{Q} = \frac{796 \text{ kHz}}{99.2} = 8 \text{ kHz} \]

Questions

Find \( f_r \), \( Q \), and \( \text{BW} \). Then, on a separate sheet of paper, draw an output curve showing the range of frequencies that are passed and blocked.

\[ f_r = \]
\[ Q = \]
\[ \text{BW} = \]

Answers

\( f_r = 1590 \text{ Hz}; \ Q = 1; \ \text{BW} = 1590 \text{ Hz} \)

The output curve is shown in Figure 7-20
Use the circuit and component values shown in Figure 7-21 to answer the following questions.

\[ f_r = \, \quad Q = \, \quad BW = \]

Figure 7-21

Questions

Find \( f_r \), \( Q \), and the bandwidth for this circuit. Then draw the output curve on a separate sheet of paper.

\[ f_r = \, \quad Q = \, \quad BW = \]

Answers

\( f_r = 500 \text{ Hz}; \quad Q = 31.4; \quad BW = 16 \text{ Hz} \)

The output curve is shown in Figure 7-22

Figure 7-22

Use the circuit shown in Figure 7-23 for this problem. In this case, the resistor value is 10 ohms. However, the inductor and capacitor values are not given.

Figure 7-23
Questions

Find the bandwidth and the values of L and C required to give the circuit a resonant frequency of 1200 Hz and a Q of 80.

\[ BW = \quad \]  
\[ L = \quad \]  
\[ C = \quad \]

Answers

\[ BW = 15 \text{ Hz} \]
\[ L = 106 \text{ mH} \]
\[ C = 0.166 \mu\text{F} \]

You can check these values by using the values of L and C to find \( f_r \).

24 Use the circuit shown in Figure 7-23 for this problem. In this case, the resistor value is given as 10 ohms. However, the inductor and capacitor values are not given.

Questions

Calculate the values of Q, L, and C required to give the circuit a resonant frequency of 300 kHz with a bandwidth of 80 kΩ.

\[ Q = \quad \]  
\[ L = \quad \]  
\[ C = \quad \]

Answers

\[ Q = 3.75 \]
\[ L = 20 \mu\text{H} \]
\[ C = 0.014 \mu\text{F} \]

25 A circuit that only passes (or blocks) a narrow range of frequencies is called a high Q circuit. Figure 7-24 shows the output curve for a high Q circuit.
Because of the narrow range of frequencies it passes, a high Q circuit is said to be very selective in the frequencies it passes. A circuit that passes (or blocks) a wide range of frequencies is called a low Q circuit. Figure 7-25 shows the output curve for a low Q circuit.

![Figure 7-25](image)

Recall the discussion in problem 18 (comparing the bandwidths of radio tuners and television amplifiers) to help you answer the following questions.

**Questions**

A. Which is the more selective, the radio tuner or the television amplifier?

B. Which would require a lower Q circuit, the radio tuner or the television amplifier?

**Answers**

A. The radio

B. The television amplifier

The inductor and capacitor in Figure 7-26 are connected in parallel, rather than in series. However, you can use the same formulas you used for the series circuit in problem 20 to calculate \( f_r \), \( Q \), and the bandwidth for parallel LC circuits.

![Figure 7-26](image)
Questions

Find $f_r$, $Q$, and the bandwidth for the circuit shown in Figure 7-26.

A. $f_r = \ldots$

B. $Q = \ldots$

C. $BW = \ldots$

Answers

A. $f_r = 1.6$ MHz

B. $X_L = 10$ ohms, so $Q = 10/0.01 = 100$ (Note that the only resistance here is the small DC resistance of the inductor.)

C. $BW = 16$ kHz (This is a fairly high $Q$ circuit.)

In the last few problems, you learned how to calculate $f_r$, $BW$, and $Q$, for a given circuit, or conversely, to calculate the component values that would produce a circuit with specified $f_r$, $BW$, and $Q$ values.

Once you know the resonant frequency and bandwidth for a circuit, you can sketch an approximate output curve. With the simple calculations listed in this problem, you can draw a curve that is accurate to within 1 percent of its true value.

The curve that results from the calculations used in this problem is sometimes called the general resonance curve.

You can determine the output voltage at several frequencies by following these steps:

1. Assume the peak output voltage $V_p$ at the resonant frequency $f_r$ to be 100 percent. This is point A on the curve shown in Figure 7-27.

2. The output voltage at $f_1$ and $f_2$ is 0.707 of 100 percent. On the graph, these are the two points labeled B in Figure 7-27. Note that $f_2 - f_1 = BW$. Therefore, at half a bandwidth above and below $f_r$, the output is 70.7 percent of $V_p$.

3. At $f_3$ and $f_4$ (the two points labeled C in Figure 7-27), the output voltage is 44.7 percent of $V_p$. Note that $f_4 - f_3 = 2$ $BW$. Therefore, at 1 bandwidth above and below $f_r$, the output is 44.7 percent of maximum.

4. At $f_5$ and $f_6$ (the two points labeled D in Figure 7-27), the output voltage is 32 percent of $V_p$. Note that $f_6 - f_5 = 3$ $BW$. Therefore, at 1.5 bandwidth above and below $f_r$, the output is 32 percent of maximum.
Chapter 7 - Resonant Circuits

5. At \( f_7 \) and \( f_8 \) (the two points labeled E in Figure 7-27), the output voltage is 24 percent of \( V_p \). Note that \( f_8 - f_7 = 4 \) BW. Therefore, at 2 bandwidth above and below \( f_r \), the output is 24 percent of maximum.

6. At \( f_{10} \) and \( f_9 \) (the two points labeled F in Figure 7-27), the output is 13 percent of \( V_p \). Note that \( f_{10} - f_9 = 8 \) BW. Therefore, at 4 bandwidth above and below \( f_r \), the output is 13 percent of maximum.

Questions

Calculate \( f_r \), \( X_L \), \( Q \), and the BW for the circuit shown in Figure 7-28.

![Figure 7-28](image)

\[ f_r = \_
\]
\[ X_L = \_
\]
\[ Q = \_
\]
\[ BW = \_
\]

Answers

\( f_r = 1 \) MHz
\( X_L = 1607 \) ohms
Now, calculate the frequencies that correspond with each percentage of the peak output voltage listed in steps 1 through 6 of problem 27. (Refer to the graph in Figure 7-27 as needed.)

**Questions**

A. At what frequency will the output level be maximum?

B. At what frequencies will the output level be 70 percent of \( V_p \)?

C. At what frequencies will the output level be 45 percent of \( V_p \)?

D. At what frequencies will the output level be 32 percent of \( V_p \)?

E. At what frequencies will the output level be 24 percent of \( V_p \)?

F. At what frequencies will the output level be 13 percent of \( V_p \)?

**Answers**

A. 1 MHz
B. 995 kHz and 1005 kHz (1 MHz – 5 kHz and + 5 kHz)
C. 990 kHz and 1010 kHz
D. 985 kHz and 1015 kHz
E. 980 kHz and 1020 kHz
F. 960 kHz and 1040 kHz

You can calculate the output voltage at each frequency in the answers to problem 28 by multiplying the peak voltage by the related percentage for each frequency.
**Question**

Calculate the output voltage for the frequencies given here, assuming that the peak output voltage is 5 volts.

A. What is the output voltage level at 995 kHz?

B. What is the output voltage level at 980 kHz?

**Answer**

A. \[ V = 5 \text{ V} \times 0.70 = 3.5 \text{ V} \]

B. \[ V = 5 \text{ V} \times 0.24 = 1.2 \text{ V} \]

Figure 7-29 shows the output curve generated by plotting the frequencies calculated in problem 28, and the corresponding output voltages calculated in this problem.
Introduction to Oscillators

In addition to their use in circuits used to filter input signals, capacitors and inductors are used in circuits called oscillators.

Oscillators are circuits that generate waveforms at particular frequencies. Many oscillators use a tuned parallel LC circuit to produce a sine wave output. This section is an introduction to the use of parallel capacitors and inductors in oscillators.

When the switch in the circuit shown in drawing (1) of Figure 7-30 is closed, current flows through both sides of the parallel LC circuit in the direction shown.

Figure 7-30

It is difficult for the current to flow through the inductor initially, because the inductor opposes any changes in current flow. Conversely, it is easy for the current to flow into the capacitor initially because, with no charge on the plates of the capacitor, there is no opposition to the flow.

As the charge on the capacitor increases, the current flow in the capacitor side of the circuit decreases. However, more current flows through the inductor. Eventually the capacitor is fully charged, so current stops flowing in the capacitor side of the circuit, and a steady current flows through the inductor.

Question

When you open the switch, what happens to the charge on the capacitor?
**Answer**

It discharges through the inductor. (Note the current direction, shown in drawing (2) of Figure 7-30.)

---

31 With the switch open, current continues to flow until the capacitor is fully discharged.

**Question**

When the capacitor is fully discharged, how much current is flowing through the inductor?

---

**Answer**

None.

---

32 Because there is no current in the inductor, its magnetic field collapses. The collapsing of the magnetic field induces a current to flow in the inductor, and this current flows in the same direction as the original current through the inductor (remember that an inductor resists any change in current flow), which is shown in drawing (2) of Figure 7-30. This current now charges the capacitor to a polarity that is opposite from the polarity that the battery induced.

**Question**

When the magnetic field of the inductor has fully collapsed, how much current will be flowing?

---

**Answer**

None.

---

33 Next, the capacitor discharges through the inductor again, but this time the current flows in the opposite direction, as shown in drawing (3) of Figure 7-30. The change in current direction builds a magnetic field of the opposite polarity. The magnetic field stops growing when the capacitor is fully discharged.

Because there is no current flowing through the inductor, its magnetic field collapses and induces current to flow in the direction shown in drawing (3) of Figure 7-30.
**Question**

What do you think the current generated by the magnetic field in the inductor will do to the capacitor?

---

**Answer**

It charges it to the original polarity.

---

34 When the field has fully collapsed, the capacitor stops charging. It now begins to discharge again, causing current to flow through the inductor in the direction shown in drawing (2) of Figure 7-30. This “seesaw” action of current will continue indefinitely.

As the current flows through the inductor, a voltage drop occurs across the inductor. The magnitude of this voltage drop will increase and decrease as the magnitude of the current changes.

**Question**

What would you expect the voltage across the inductor to look like when you view it on an oscilloscope?

---

**Answer**

A sine wave

---

35 In a perfect circuit this oscillation continues and produces a continuous sine wave. In practice, a small amount of power is lost in the DC resistance of the inductor and the other wiring. As a result, the sine wave gradually decreases in amplitude and dies out to nothing after a few cycles, as shown in Figure 7-31.

---

**Question**

How might you prevent this fade out?
**Answer**

By replacing a small amount of energy in each cycle

This lost energy can be injected into the circuit by momentarily closing and opening the switch at the correct time. (See drawing (1) of Figure 7-30.) This would sustain the oscillations indefinitely.

An electronic switch (such as a transistor) could be connected to the inductor as shown in Figure 7-32. Changes in the voltage drop across the inductor would turn the electronic switch on or off, thereby opening or closing the switch.

![Figure 7-32](image)

The small voltage drop across the few turns of the inductor (also referred to as a coil), between point B at the end of the coil and point A about halfway along the coil is used to operate the electronic switch. These points are shown in Figure 7-32.

Using a small part of an output voltage in this way is called feedback because the voltage is “fed back” to an earlier part of the circuit to make it operate correctly.

When you properly set up such a circuit, it produces a continuous sine wave output of constant amplitude and constant frequency. This circuit is called an oscillator. You can calculate the frequency of the sine waves generated by an oscillator with the following formula for determining resonant frequency:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

The principles you learned in the last few problems are used in practical oscillator circuits, such as those presented in Chapter 9.

**Summary**

In this chapter, you learned about the following topics related to resonant circuits:

- How the impedance of a series LC circuit and a parallel LC circuit changes with changes in frequency.
At resonant frequency for a parallel LC circuit, the impedance is at its highest, whereas for a series LC circuit impedance is at its lowest.

- The concept of bandwidth allows you to easily calculate the output voltage at various frequencies and draw an accurate output curve.
- The principles of bandpass filters and notch (or band-reject) filters.
- The fundamental concepts integral to understanding how an oscillator functions.

Self-Test

These questions test your understanding of the concepts covered in this chapter. Use a separate sheet of paper for your drawings or calculations. Compare your answers with the answers provided following the test.

1. What is the formula for the impedance of a series LC circuit?

2. What is the formula for the impedance of a series RLC circuit (a circuit containing resistance, inductance, and capacitance)?

3. What is the relationship between $X_C$ and $X_L$ at the resonant frequency?

4. What is the voltage across the resistor in a series RLC circuit at the resonant frequency?

5. What is the voltage across a resistor in series with a parallel LC circuit at the resonant frequency?

6. What is the impedance of a series circuit at resonance?

7. What is the formula for the impedance of a parallel circuit at resonance?

8. What is the formula for the resonant frequency of a circuit?
9. What is the formula for the bandwidth of a circuit?

10. What is the formula for the Q of a circuit?

Questions 11–13 use a series LC circuit. In each case, the values of the L, C, and R are given. Find \( f_r, X_L, X_C, Z, Q, \) and BW. Draw an output curve for each answer.

11. \( L = 0.1 \) mH, \( C = 0.01 \) \( \mu \)F, \( R = 10 \) ohms

12. \( L = 4 \) mH, \( C = 6.4 \) \( \mu \)F, \( R = 0.25 \) ohms

13. \( L = 16 \) mH, \( C = 10 \) \( \mu \)F, \( R = 20 \) ohms

Questions 14 and 15 use a parallel LC circuit. No R is used; \( r \) is given. Find \( f_r, X_L, X_C, Z, Q, \) and BW.

14. \( L = 6.4 \) mH, \( C = 10 \) \( \mu \)F, \( r = 8 \) ohms

15. \( L = 0.7 \) mH, \( C = 0.04 \) \( \mu \)F, \( r = 1.3 \) ohms

16. Use the output curve shown in Figure 7-33 to answer the following questions.
   A. What is the peak value of the output curve?
   
   B. What is the resonant frequency?
   
   C. What is the voltage level at the half power points?
   
   D. What are the half power frequencies?
E. What is the bandwidth?

F. What is the Q of the circuit?

Figure 7-33

Answers to Self-Test

If your answers do not agree with those given here, review the problems indicated in parentheses before you go on to the next chapter.

1. \( Z = X_L - X_C \) (problem 2)
2. \( Z = \sqrt{(X_L - X_C)^2 + R^2} \) (problem 2)
3. \( X_L = X_C \) (problem 5)
4. Maximum output (problem 5)
5. Minimum output (problem 11)
6. \( Z = \text{minimum. Ideally, it is equal to the resistance.} \) (problem 5)
7. \( Z = \frac{L}{Cr} \) (problem 10)
In this formula, r is the resistance of the coil.

8. \( f_r = \frac{1}{2\pi \sqrt{LC}} \)  
   (problem 6)

9. \( BW = \frac{f_r}{Q} \)  
   (problem 20)

10. \( Q = \frac{X_L}{R} \)  
    (problem 20)

or

\( \frac{X_L}{r} \)

To draw the output curves for Questions 11–13, use the graph in Figure 7-27 as a guide and insert the appropriate bandwidth and frequency values.

11. \( f_r = 160 \text{ kHz}, X_L = X_C = 100 \text{ ohms}, Q = 10, \) 
    \( BW = 16 \text{ kHz}, Z = 10 \text{ ohms} \)  
    (problems 21–29)

12. \( f_r = 1 \text{ kHz}, X_L = X_C = 25 \text{ ohms}, Q = 100, \) 
    \( BW = 10 \text{ Hz}, Z = 0.25 \text{ ohms} \)  
    (problems 21–29)

13. \( f_r = 400 \text{ Hz}, X_L = X_C = 40 \text{ ohms}, Q = 2, \) 
    \( BW = 200 \text{ Hz}, Z = 20 \text{ ohms} \)  
    (problems 21–29)

14. \( f_r = 600 \text{ Hz}, X_L = 24 \text{ ohms}, X_C = 26.5, \) 
    \( Q = 3, BW = 200 \text{ Hz}, Z = 80 \text{ ohms} \)  
    (problems 21–29)

Because Q is not given, you should use the more complicated of the two formulas shown in Problem 10 to calculate the resonant frequency.

15. \( f_r = 30 \text{ Hz}, X_L = 132 \text{ ohms}, X_C = 132, \) 
    \( Q = 101.5, BW = 300 \text{ Hz}, Z = 13.4 \text{ ohms} \)  
    (problems 21–29)

16.

A. 10.1 V  
   (problems 27 and 28)

B. 148 kHz  
   (problems 27 and 28)

C. 10.1 \( \times 0.707 = 7.14 \text{ V} \)  
   (problems 27 and 28)

D. Approximately 135 kHz and 160 kHz (not quite symmetrical)  
   (problems 27 and 28)

E. BW = 25 kHz  
   (problems 27 and 28)

F. \( Q = \frac{f_r}{BW} = \text{ about 5.9} \)  
   (problems 27 and 28)
CHAPTER 8

Transistor Amplifiers

Many of the AC signals you’ll work with in electronics are very small. For example, the signal that an optical detector reads from a DVD disk cannot drive a speaker, and the signal from a microphone’s output is too weak to send out as a radio signal. In cases such as these, you must use an amplifier to boost the signal.

The best way to demonstrate the basics of amplifying a weak signal to a usable level is by starting with a one-transistor amplifier. Once you understand a one-transistor amplifier, you can grasp the building block that makes up amplifier circuits used in electronic devices such as cellphones, MP3 players, and home entertainment centers.

Many amplifier circuit configurations are possible. The simplest and most basic of amplifying circuits are used in this chapter to demonstrate how a transistor amplifies a signal. You will also see the steps for designing an amplifier.

The emphasis in this chapter is on the BJT, just as it was in Chapters 3 and 4 (which dealt primarily with the application of transistors in switching circuits). Two other types of devices used as amplifiers are also examined: the JFET (introduced in Chapters 3 and 4) and an integrated circuit called the operational amplifier (op-amp).

When you complete this chapter, you will be able to do the following:

- Calculate the voltage gain for an amplifier.
- Calculate the DC output voltage for an amplifier circuit.
- Select the appropriate resistor values to provide the required gain to an amplifier circuit.
242  Chapter 8  Transistor Amplifiers

- Identify several ways of increasing the gain of a one-transistor amplifier.
- Distinguish between the effects of a standard one-transistor amplifier and an emitter follower circuit.
- Design a simple emitter follower circuit.
- Analyze a simple circuit to find the DC level out and the AC gain.
- Design a simple common source (JFET) amplifier.
- Analyze a JFET amplifier to find the AC gain.
- Recognize an op-amp and its connections.

Working with Transistor Amplifiers

In Chapter 3, you learned how to turn transistors ON and OFF. You also learned how to calculate the value of resistors in amplifier circuits to set the collector DC voltage to half the power supply voltage. To review this concept, examine the circuit shown in Figure 8-1.

![Figure 8-1](image)

Use the following steps to find the value of \( R_B \) that will set the collector DC voltage (\( V_C \)) to half the supply voltage (\( V_S \)).

1. Find \( I_C \) by using the following:
   \[
   I_C = \frac{V_R}{R_C} = \frac{V_S - V_C}{R_C}
   \]

2. Find \( I_B \) by using the following:
   \[
   I_B = \frac{I_C}{\beta}
   \]
3. Find $R_B$ by using the following:

$$R_B = \frac{V_S}{I_B}$$

**Questions**

Find the value of $R_B$ that will set the collector voltage to 5 V, using Steps 1–3 and the following values for the circuit:

$V_S = 10$ V, $R_C = 1\, \text{k}\Omega$, $\beta = 100$

A. $I_C = \underline{\phantom{0000}}$

B. $I_B = \underline{\phantom{0000}}$

C. $R_B = \underline{\phantom{0000}}$

**Answers**

A. $I_C = \frac{5\, \text{V}}{1\, \text{k}\Omega} = 5\, \text{mA}$

B. $I_B = \frac{5}{100} = 0.05\, \text{mA}$

C. $R_B = \frac{10\, \text{V}}{0.05\, \text{mA}} = 200\, \text{k}\Omega$

2. You have seen that using a 200 kΩ resistor for $R_B$ gives an output level of 5 V at the collector. This procedure of setting the output DC level is called *biasing*. In problem 1, you biased the transistor to a 5 V DC output.

Use the circuit shown in Figure 8-1 and the formulas given in problem 1 to answer the following questions.

**Questions**

A. If you decrease the value of $R_B$, how do $I_B$, $I_C$, $V_R$, and the bias point $V_C$ change?

B. If you increase the value of $R_B$ how do $I_B$, $I_C$, $V_R$, and $V_C$ change?
Answers
A. \( I_B \) increases, \( I_C \) increases, \( V_R \) increases, and so the bias point \( V_C \) decreases.
B. \( I_B \) decreases, \( I_C \) decreases, \( V_R \) decreases, and so the bias point \( V_C \) increases.

3 In problem 2 you found that changing the value of \( R_B \), in the circuit shown in Figure 8-1 changes the value of \( I_B \).

The transistor amplifies slight variations in \( I_B \). Therefore, the amount \( I_C \) that fluctuates is \( \beta \) times the change in value in \( I_B \).

The variations in \( I_C \) cause changes in the voltage drop \( V_R \) across \( R_C \). Therefore, the output voltage measured at the collector also changes.

Questions

For the circuit shown in Figure 8-1, calculate the following parameters when \( R_B = 168 \, k\Omega \) and \( V_S = 10 \, V \).

A. \( I_B = \frac{V_S}{R_B} = \)

B. \( I_C = \beta I_B = \)

C. \( V_R = I_C R_C = \)

D. \( V_C = V_S - V_R = \)

Answers
A. \( I_B = \frac{10 \, V}{168 \, k\Omega} = 0.059 \, mA \)
B. \( I_C = 100 \times 0.059 = 5.9 \, mA \)
C. \( V_R = 1 \, k\Omega \times 5.9 \, mA = 5.9 \, V \)
D. \( V_C = 10 \, V - 5.9 \, V = 4.1 \, V \)
Use the circuit shown in Figure 8-1 to answer the following questions when $V_S = 10$ V.

**Questions**

Calculate $V_C$ for each of the following values of $R_B$.

A. $100$ kΩ

B. $10$ MΩ

C. $133$ kΩ

D. $400$ kΩ

**Answers**

A. $I_B = 0.1$ mA, $I_C = 10$ mA, $V_C = 0$ V

B. $I_B = 1$ µA, $I_C = 0.1$ mA, $V_C = 10$ V (approximately)

C. $I_B = 0.075$ mA, $I_C = 7.5$ mA, $V_C = 2.5$ V

D. $I_B = 0.025$ mA, $I_C = 2.5$ mA, $V_C = 7.5$ V

The values of $I_C$ and $V_C$ that you calculated in problems 1 and 4 are plotted on the graph on the left side of Figure 8-2. The straight line connecting these points on the graph is called the *load line*.
246 Chapter 8 Transistor Amplifiers

The axis labeled $V_C$ represents the voltage between the collector and the emitter of the transistor, and not the voltage between the collector and ground. Therefore, this axis should correctly be labeled $V_{CE}$, as shown in the graph on the right of the figure. (For this circuit, $V_{CE} = V_C$ because there is no resistor between the emitter and ground.)

**Questions**

A. At point A in the graph on the right, is the transistor ON or OFF?

B. Is it ON or OFF at point B?

**Answers**

A. ON because full current flows, and the transistor acts like a short circuit. The voltage drop across the transistor is 0 V.

B. OFF because essentially no current flows, and the transistor acts like an open circuit. The voltage drop across the transistor is at its maximum (10 V, in this case).

Point A on the graph shown in Figure 8-2 is called the saturated point (or the saturation point) because it is at that point that the collector current is at its maximum.

Point B on the graph shown in Figure 8-2 is often called the cutoff point because, at that point, the transistor is OFF and no collector current flows.

In regions X and Y, the gain ($\beta$) is not constant, so these are called the nonlinear regions. Note that $\beta = I_C / I_B$. Therefore, $\beta$ is the slope of the line shown in the graph.

As a rough guide, $V_1$ is about 1 V, and $V_2$ is about 1 V less than the voltage at point B.

**Question**

What is the value of $V_{CE}$ at point B?

**Answer**

$V_{CE} = V_S$, which is 10 V in this case.

In region Z of the graph shown in Figure 8-2, \( \beta \) (that is, the slope of the graph) is constant. Therefore, this is called the linear region. Operating the transistor in the linear region results in an output signal that is free of distortion.

**Question**

Which values of \( I_C \) and \( V_C \) would result in an undistorted output in the circuit shown in Figure 8-1?

A. \( I_C = 9 \text{ mA}, V_C = 1 \text{ V} \)
B. \( I_C = 1 \text{ mA}, V_C = 9 \text{ V} \)
C. \( I_C = 6 \text{ mA}, V_C = 4.5 \text{ V} \)

**Answer**

C is the only one. A and B fall into nonlinear regions.

If you apply a small AC signal to the base of the transistor after it has been biased, the small voltage variations of the AC signal (shown in Figure 8-3 as a sine wave) cause small variations in the base current.

These variations in the base current will be amplified by a factor of \( \beta \), and will cause corresponding variations in the collector current. The variations in the collector current, in turn, will cause similar variations in the collector voltage.

The \( \beta \) used for AC gain calculations is different from the \( \beta \) used in calculating DC variations. The AC \( \beta \) is the value of the common emitter AC forward current transfer ratio, which is listed as \( h_{fe} \) in manufacturers’ transistor datasheets. Use the AC \( \beta \) whenever you need to calculate the AC output for a given AC input or to determine an AC current variation. Use the DC \( \beta \) to calculate the base or
collector DC current values. It is important that you know which $\beta$ to use and remember that one is used for DC and the other is used for AC variations. The DC $\beta$ is sometimes called $h_{FE}$ or $\beta_{dc}$.

As $V_{in}$ increases, the base current increases, which causes the collector current to increase. An increase in the collector current increases the voltage drop across $R_C$, which causes $V_C$ to decrease.

**NOTE** The capacitor shown at the input blocks DC (infinite reactance) and easily passes AC (low reactance). This is a common isolation technique used at the input and output of AC circuits.

Questions

A. If the input signal decreases, what happens to the collector voltage?

B. If you apply a sine wave to the input, what waveform would you expect at the collector?

Answers

A. The collector voltage, $V_C$, increases.

B. A sine wave, but inverted as shown in Figure 8-4.

![Figure 8-4](image)

Figure 8-4 shows the input and output sine waves for an amplifier circuit.

The input voltage $V_{in}$ is applied to the base. (Strictly speaking, it is applied across the base-emitter diode.) The voltage variations at the collector are centered on the DC bias point $V_C$, and they will be larger than variations in
the input voltage. Therefore, the output sine wave is larger than the input sine wave (that is, amplified).

This amplified output signal at the collector can be used to drive a load (such as a speaker).

To distinguish these AC variations in output from the DC bias level, you indicate the AC output voltage by $V_{out}$. In most cases, $V_{out}$ is a peak-to-peak value.

**Questions**

A. What is meant by $V_C$?

B. What is meant by $V_{out}$?

**Answers**

A. Collector DC voltage, or the bias point

B. AC output voltage

The ratio of the output voltage to the input voltage is called the *voltage gain* of the amplifier.

$$\text{Voltage gain } = A_V = \frac{V_{out}}{V_{in}}$$

To calculate the voltage gain of an amplifier, you can measure $V_{in}$ and $V_{out}$ with an oscilloscope. Measure peak-to-peak voltages for this calculation.

For the circuit shown in Figure 8-4 you can calculate the voltage gain using the following formula:

$$A_V = \beta \times \frac{R_L}{R_{in}}$$

In this equation:

- $R_L$ = is the *load resistance*. In this circuit, the collector resistor $R_C$ is the load resistance.

- $R_{in}$ = the *input resistance* of the transistor. You can find $R_{in}$ (often called $h_{ie}$) on the manufacturers’ data or specification sheets. In most transistors, input resistance is about 1 kΩ to 2 kΩ.

You can find $V_{out}$ by combining these two voltage gain equations:

$$A_V = \frac{V_{out}}{V_{in}} \quad \text{and} \quad A_V = \beta \times \frac{R_L}{R_{in}}$$

Therefore, $$\frac{V_{out}}{V_{in}} = \beta \times \frac{R_L}{R_{in}}$$
Solving this for $V_{\text{out}}$ results in the following equation. Here, the values of $R_{\text{in}} = 1 \, \text{k}\Omega$, $V_{\text{in}} = 1 \, \text{mV}$, $R_C = 1 \, \text{k}\Omega$, and $\beta = 100$ were used to perform this sample calculation.

\[
V_{\text{out}} = V_{\text{in}} \times \beta \times \frac{R_L}{R_{\text{in}}} \\
= 1 \, \text{mV} \times 100 \times \frac{1 \, \text{k}\Omega}{1 \, \text{k}\Omega} \\
= 100 \, \text{mV}
\]

Questions

A. Calculate $V_{\text{out}}$ if $R_{\text{in}} = 2 \, \text{k}\Omega$, $V_{\text{in}} = 1 \, \text{mV}$, $R_C = 1 \, \text{k}\Omega$, and $\beta = 100$.

B. Find the voltage gain in both cases.

Answers

A. $V_{\text{out}} = 50 \, \text{mV}$
B. $A_V = 100$ and $A_V = 50$

This simple amplifier can provide voltage gains of up to about 500. But it does have several faults that limit its practical usefulness.

- Because of variations in $\beta$ between transistors, $V_C$ changes if the transistor is changed. To compensate for this, you will have to adjust $R_B$.
- $R_{\text{in}}$ or $h_{ie}$ varies greatly from transistor to transistor. This variation, combined with variations in $\beta$, means that you cannot guarantee the gain from one transistor amplifier to another.
- Both $R_{\text{in}}$ and $\beta$ change greatly with temperature, hence the gain is very temperature-dependent. For example, a simple amplifier circuit like that discussed in this problem was designed to work in the desert in July. It would fail completely in Alaska in the winter. If the amplifier worked perfectly in the lab, it probably would not work outdoors on either a hot or cold day.

**Note** An amplifier whose gain and DC level bias point change as described in this problem is said to be *unstable*. For reliable operation, an amplifier should be as stable as possible. In later problems, you will see how to design a stable amplifier.
The Transistor Amplifier Experiment

In the following experiment, you build a simple transistor amplifier circuit, measure the output voltage and gain, and determine how the output voltage and gain changes with temperature.

You will need the following equipment and supplies:

- A transistor
- A 250 kΩ potentiometer (that is, a variable resistor)
- A 1 kΩ resistor
- A 10 kΩ resistor
- A 0.1 µF capacitor
- A 9 V transistor radio battery or a lab type power supply
- A breadboard
- A signal generator or a sine wave oscillator
- An oscilloscope

If you do not have what you need to set up the circuit and measure the values, just read through the experiment.

Follow these steps to complete the experiment:

1. Set up the circuit shown in Figure 8-5 on the breadboard.

2. Adjust the potentiometer so that the collector DC level is between 4.5 V and 5 V.

3. Connect the signal generator to the input and adjust the frequency to produce a sine wave output of 1 kHz.
4. Adjust the level of the signal generator so that the output of the transistor at the collector, viewed on an oscilloscope, is not distorted. Make sure the output looks like a sine wave and not like the waveform shown in Figure 8-6.

Figure 8-6

5. Measure the pp sine wave input and output of the circuit.

6. Find the voltage gain from the formula \( A_V = \frac{V_{\text{out}}}{V_{\text{in}}} \).

7. Now, heat the transistor while it is in the circuit by placing a soldering iron near it for 15–30 seconds. Note the changes in the DC level at the collector, and the changes in the pp level of the output sine wave.

8. Repeat steps 2–7 with other transistors. Note the differences in gain.

You will discover that you cannot always guarantee in which way the outputs will change. This is because the relative values of \( \beta \) and \( R_{\text{in}} \) may be different for various transistors, and they may change at different rates as the temperature changes.

It is very important to understand that the bias point and the gain can (and will) change with changes in temperature. Obviously, this limits the practical usefulness of this circuit. To design a usable stable amplifier you must make a few changes, as covered in the next few problems.

A Stable Amplifier

You can overcome the instability of the transistor amplifier discussed in the first ten problems of this chapter by adding two resistors to the circuit. Figure 8-7 shows an amplifier circuit to which resistors \( R_E \) and \( R_2 \) have been added. \( R_2 \), along with \( R_1 \) (labeled \( R_B \) in the previous circuits), ensures the stability of the DC bias point.

![Figure 8-7](image-url)
By adding the emitter resistor $R_E$, you ensure the stability of the AC gain. The labels in Figure 8-8 identify the DC currents and voltages present in the circuit. These parameters are used in the next several problems.

**Figure 8-8**

**Question**

In designing an amplifier circuit and choosing the resistor values, there are two goals. What are they?

**Answer**

A stable DC bias point, and a stable AC gain

12 Look at the gain first. The gain formula for the circuit shown in Figure 8-8 is as follows:

$$A_V = \frac{V_{out}}{V_{in}} = \frac{R_C}{R_E}$$

This is a slight variation on the formula shown in problem 10. (The complex mathematical justification for this is not important right here.) Here, the AC gain has been made independent of the transistor $\beta$ and input resistance.

As these two parameters vary with temperature, and vary from transistor to transistor, you now have a method of setting the AC gain so that it will be constant regardless of all these variations.

**Questions**

Use the circuit shown in Figure 8-8 with $R_C = 10 \, \text{k\Omega}$ and $R_E = 1 \, \text{k\Omega}$ to answer the following questions.
A. What is the AC voltage gain for a transistor if its $\beta = 100$?

B. What is the gain if $\beta = 500$?

**Answers**

A. 10

B. 10

This problem provides a couple of examples that will help you understand how to calculate voltage gain and the resulting output voltage.

**Questions**

A. Calculate the voltage gain ($A_V$) of the amplifier circuit shown in Figure 8-8 if $R_C = 10 \, k\Omega$ and $R_E = 1 \, k\Omega$. Then, use $A_V$ to calculate the output voltage if the input signal is $2 \, mV_{pp}$.

B. Calculate the voltage gain if $R_C = 1 \, k\Omega$ and $R_E = 250$ ohms. Then, use $A_V$ to calculate the output voltage if the input signal is $1 \, V_{pp}$.

**Answers**

A. $A_V = \frac{R_C}{R_E} = \frac{10 \, k\Omega}{1 \, k\Omega} = 10$

$V_{out} = 10 \times V_{in} = 20 \, mV$

B. $A_V = \frac{1 \, k\Omega}{250 \, ohms} = 4$

$V_{out} = 4 \, V_{pp}$

Although the amplifier circuit shown in Figure 8-8 produces stable values of voltage gain, it does not produce high values of voltage gain. For
various reasons, this circuit is limited to voltage gains of 50 or less. Later, this chapter discusses an amplifier circuit that can produce higher values of voltage gain.

Before you continue, look at the current relationships in the amplifier circuit shown in Figure 8-8 and an approximation that is often made. You can calculate the current flowing through the emitter resistor with the following equation:

$$I_E = I_B + I_C$$

In other words, the emitter current is the sum of the base and the collector currents.

$I_C$ is much larger than $I_B$. You can, therefore, assume that the emitter current is equal to the collector current.

$$I_E = I_C$$

**Question**

Calculate $V_C$, $V_E$, and $A_V$ for the circuit shown in Figure 8-9 with $V_S = 10$ V, $I_C = 1$ mA, $R_C = 1$ kΩ, and $R_E = 100$ ohms.

**Answers**

$$V_R = 1\, \text{kΩ} \times 1\, \text{mA} = 1\, \text{V}$$

$$V_C = V_S - V_R - 10 - 1 = 9\, \text{V}$$

$$V_E = 100\, \text{ohms} \times 1\, \text{mA} = 0.1\, \text{V}$$

$$A_V = \frac{R_C}{R_E} = \frac{1\, \text{kΩ}}{100\, \text{ohms}} = 10$$

For this problem, use the circuit shown in Figure 8-9 with $V_S = 10$ V, $I_C = 1$ mA, $R_C = 2$ kΩ, and $R_E = 1$ kΩ.
Question

Calculate $V_C$, $V_E$, and $A_V$.

Answer

$V_R = 2 \, k\Omega \times 1 \, mA = 2 \, V$

$V_C = 10 - 2 = 8 \, V$

$V_E = 1 \, k\Omega \times 1 \, mA = 1 \, V$

$A_V = \frac{R_C}{R_E} = \frac{2 \, k\Omega}{1 \, k\Omega} = 2$

For this problem, use the circuit shown in Figure 8-9 with $V_S = 10 \, V$ and $I_C = 1 \, mA$.

Questions

Find $V_C$, $V_E$, and $A_V$ for the following values of $R_C$ and $R_E$.

A. $R_C = 5 \, k\Omega$, $R_E = 1 \, k\Omega$

B. $R_C = 4.7 \, k\Omega$, $R_E = 220 \, \text{ohms}$

Answers

A. $V_R = 5 \, V$, $V_C = 5 \, V$, $V_E = 1 \, V$, $A_V = 5$

B. $V_R = 4.7 \, V$, $V_C = 5.3 \, V$, $V_E = 0.22 \, V$, $A_V = 21.36$

Biasing

In this problem, you see the steps used to calculate the resistor values needed to bias the amplifier circuit shown in Figure 8-10.
You can determine values for $R_1$, $R_2$, and $R_E$ that bias the circuit to a specified DC output voltage and a specified AC voltage gain by using the following steps. Read the following procedure and the relevant formulas first, and then you will walk through an example.

1. Find $R_E$ by using the following:
   \[ A_V = \frac{R_C}{R_E}. \]

2. Find $V_E$ by using the following:
   \[ A_V = \frac{V_R}{V_E} = \frac{V_S - V_C}{V_E}. \]

3. Find $V_B$ by using the following:
   \[ V_B = V_E + 0.7 \text{ V}. \]

4. Find $I_C$ by using the following:
   \[ I_C = \frac{V_S - V_C}{R_C}. \]

5. Find $I_B$ by using the following:
   \[ I_B = \frac{I_C}{\beta}. \]

6. Find $I_2$ where $I_2$ is $10I_B$. (Refer to the circuit shown in Figure 8-8.) This is a convenient rule of thumb that is a crucial step in providing stability to the DC bias point.

7. Find $R_2$ by using the following:
   \[ R_2 = \frac{V_B}{I_2}. \]
8. Find \( R_1 \) by using the following:
\[
R_1 = \frac{V_S - V_S}{I_2 + I_B}.
\]

9. Steps 7 and 8 might produce nonstandard values for the resistors, so choose the nearest standard values.

10. Use the voltage divider formula to see if the standard values you chose in step 9 result in a voltage level close to \( V_B \) found in step 3. ("Close" means within 10 percent of the ideal.)

This procedure produces an amplifier that works, and results in a DC output voltage and AC gain that are close to those specified at the beginning of the problem.

**Questions**

Find the values of the parameters specified in each question for the circuit shown in Figure 8-11 if \( AV = 10 \), \( V_C = 5V \), \( R_C = 1 \, \text{k}\Omega \), \( \beta = 100 \), and \( V_S = 10 \, \text{V} \).

![Figure 8-11](image)

Work through steps 1–10, referring to the steps in this problem for formulas as necessary.

1. Find \( R_E \).
\[
A_V = \frac{R_C}{R_E} \quad \text{so} \quad R_E = \frac{R_C}{A_V} = \frac{1 \, \text{k}\Omega}{10} = 100 \, \text{ohms}.
\]

2. \( V_E = \) 

3. \( V_B = \) 

4. \( I_C = \) 

5. \( I_B = \) 

6. \( I_2 = \)
7. \( R_2 = \) ____________________________

8. \( R_1 = \) ____________________________

9. Choose the standard resistance values that are closest to the calculated values for \( R_1 \) and \( R_2 \).
   \( R_1 = \) ____________________________ ; \( R_2 = \) ____________________________.

10. Using the standard resistance values for \( R_1 \) and \( R_2 \), find \( V_B \).
    \( V_B = \) ____________________________

**Answers**

You should have found values close to these:

1. 100 ohms
2. 0.5 V
3. 1.2 V
4. 5 mA
5. 0.05 mA
6. 0.5 mA
7. 2.4 kΩ
8. 16 kΩ
9. 2.4 kΩ and 16 kΩ are standard values (they are 5 percent values). Alternative acceptable values would be 2.2 kΩ and 15 kΩ.
10. With 2.4 kΩ and 16 kΩ, \( V_B = 1.3 \) V. With 2.2 kΩ and 15 kΩ, \( V_B = 1.28 \) V. Either value of \( V_B \) is within 10 percent of the 1.2 V calculated for \( V_B \) in step 3.

Figure 8-12 shows an amplifier circuit using the values you calculated in this problem for \( R_1 \), \( R_2 \), and \( R_E \).

![Figure 8-12](image)

Follow the steps in problem 17 to answer the following questions.
Questions

Find the values of the parameters specified in each question for the circuit shown in Figure 8-11 if $A_V = 15$, $V_C = 6$ V, $\beta = 100$, $R_C = 3.3 \, \Omega$, and $V_S = 10$ V.

1. $R_E =$
2. $V_E =$
3. $V_B =$
4. $I_C =$
5. $I_B =$
6. $I_2 =$
7. $R_2 =$
8. $R_1 =$

9. Choose the standard resistance values that are closest to the calculated values for $R_1$ and $R_2$.

   $R_1 =$
   $R_2 =$

10. Using the standard resistance values for $R_1$ and $R_2$, find $V_B$.

   $V_B =$

Answers

These are the values you should have found:

1. 220 ohms
2. 0.27 V
3. 0.97 V (You can use 1 V if you wish.)
4. 1.2 mA
5. 0.012 mA
6. 0.12 mA
7. 8.3 kΩ
8. 68.2 kΩ
9. These are very close to the standard values of 8.2 kΩ and 68 kΩ.
10. 1.08 using the standard values. This is close enough to the value of $V_B$ calculated in question 3.

19 The AC voltage gain for the circuit discussed in problem 18 was 10. Earlier, you learned that the maximum practical gain of the amplifier circuit shown in Figure 8-11 is about 50.

   However, in problem 10, you learned that AC voltage gains of up to 500 are possible for the amplifier circuit shown in Figure 8-4. Therefore, by ensuring
the stability of the DC bias point, the amplifier has much lower gain than is possible with the transistor amplifier circuit shown in Figure 8-4.

You can make an amplifier with stable bias points without giving up high AC voltage gain by placing a capacitor in parallel with the emitter resistor, as shown in Figure 8-13.

If the reactance of this capacitor for an AC signal is significantly smaller than $R_E$, the AC signal passes through the capacitor rather than the resistor. Therefore, the capacitor is called an *emitter bypass capacitor*. The AC signal “sees” a different circuit from the DC, which is blocked by the capacitor and must flow through the resistor. Figure 8-14 shows the different circuits seen by AC and DC signals.

The AC voltage gain is now very close to that of the amplifier circuit discussed in problems 1–10.

**Questions**

A. What effect does the emitter bypass capacitor have on an AC signal?

B. What effect does the emitter bypass capacitor have on the AC voltage gain?
Chapter 8  Transistor Amplifiers

C. What is the AC voltage gain formula with an emitter bypass capacitor included in the circuit?

**Answers**

A. It makes the emitter look like a ground, and effectively turns the circuit into the circuit in Figure 8-4.

B. It increases the gain.

C. The same formula used in problem 10:

\[ A_V = \beta \times \frac{R_C}{R_{in}} \]

20. You can use the circuit shown in Figure 8-13 when you need as much AC voltage gain as possible. When the volume of AC voltage gain is your priority, predicting the actual amount of gain is usually not important, so the fact that the equation is inexact is unimportant. If you need an accurate amount of gain, then you must use a different type of amplifier circuit that produces lower amounts of gain.

You can find the value of the capacitor \( C_E \) using the following steps:

1. Determine the lowest frequency at which the amplifier must operate.
2. Calculate \( X_C \) with this formula:

\[ X_C = \frac{R_E}{10} \]

3. Calculate \( C_E \) with the following formula using the lowest frequency at which the amplifier must operate (determined in step 1):

\[ X_C = \frac{1}{2\pi f_C} \]

For the following question, use the circuit shown in Figure 8-12, with an emitter bypass capacitor added, as shown in Figure 8-15.
Questions

Follow the previous steps to calculate the value of $C_E$ required if the lowest operating frequency of the amplifier is 50 Hz.

1. 50 Hz is the lowest frequency at which the amplifier must operate.
2. $X_C = $____________________
3. $C_E = $____________________

Answers

$X_C = 10$ ohms
$C_E = 320 \mu F$ (approximately)

The AC voltage gain formula for an amplifier with an emitter bypass capacitor (Circuit 2 of Figure 8-16) is the same as the AC voltage gain formula for the amplifiers discussed in problems 1–10, where the emitter is directly connected to ground (Circuit 1 of Figure 8-16).

![Figure 8-16](image)

The AC voltage gain formula for an amplifier is as follows:

$$A_V = \beta \times \frac{R_C}{R_{in} + R_E}$$

($R_C$ is being used instead of $R_L$, because the collector resistor is the total load on the amplifier.)

- **Circuit 1** — Here, $R_E = 0$, so the AC voltage gain formula is as follows:
  $$A_V = \beta \times \frac{R_C}{R_{in}}$$
Chapter 8  Transistor Amplifiers

Circuit 2 — Here, \( R_E = \) zero for an AC signal, because the AC signal is grounded by the capacitor and \( R_E \) is out of the AC circuit. Thus, the AC voltage gain formula is as follows:

\[
A_V = \beta \times \frac{R_C}{R_{in}}.
\]

21 To obtain even larger voltage gains, two transistor amplifiers can be cascaded. That is, you can feed the output of the first amplifier into the input of the second amplifier. Figure 8-17 shows a two-transistor amplifier circuit, also called a two-stage amplifier.

You find the total AC voltage gain by multiplying the individual gains. For example, if the first amplifier has an AC voltage gain of 10, and the second has an AC voltage gain of 10, then the overall AC voltage gain is 100.

Questions

A. Suppose you cascade an amplifier with a gain of 15 with one that has a gain of 25. What is the overall gain?

B. What is the overall gain if the individual gains are 13 and 17?

Answers

A. 375
B. 221

22 Two stage amplifiers can achieve very large AC voltage gains if each amplifier uses an emitter bypass capacitor.
**Question**

What is the total AC voltage gain if each stage of a two-transistor amplifier has a gain of 100?

---

**Answer**

10,000

---

**The Emitter Follower**

Figure 8-18 shows another type of amplifier circuit.

![Figure 8-18](image)

**Question**

How is the circuit shown in Figure 8-18 different from the amplifier circuit discussed in problems 11–18?

---

**Answer**

There is no collector resistor, and the output signal is taken from the emitter.

---

The circuit shown in Figure 8-18 is called an *emitter follower* amplifier. (In some cases, it is also called the *common collector* amplifier.)
The output signal has some interesting features:

- The peak-to-peak value of the output signal is almost the same as the input signal. In other words, the circuit gain is slightly less than 1, though in practice it is often considered to be 1.
- The output signal has the same phase as the input signal. It is not inverted. In fact, the output is simply considered to be the same as the input.
- The amplifier has a very high input resistance. Therefore, it draws very little current from the signal source.
- The amplifier has a very low output resistance. Therefore, the signal at the emitter appears to be emanating from a battery or signal generator with a very low internal resistance.

**Questions**

A. What is the voltage gain of an emitter follower amplifier?

B. Is the output signal inverted?

C. What is the input resistance of the emitter follower amplifier?

D. What is its output resistance?

**Answers**

A. 1
B. No
C. High
D. Low

The example in this problem demonstrates the importance of the emitter follower circuit. The circuit shown in Figure 8-19 contains a small AC motor with 100 ohms resistance that is driven by a 10 $V_{pp}$ signal from a generator. The 50 ohm resistor labeled $R_G$ is the internal resistance of the generator.
In this circuit, only 6.7 Vpp is applied to the motor; the rest of the voltage is dropped across $R_G$.

\[ R_G = 50 \Omega \]

\[ 6.7 \text{ Vpp} \]

\[ 10 \text{ Vpp} \]

\[ 100 \Omega \]

**Figure 8-19**

Figure 8-20 shows the same circuit, with a transistor connected between the generator and the motor in an emitter follower configuration.

\[ V_S \]

\[ \text{Vs} \]

**Figure 8-20**

You can use the following formula to calculate the approximate input resistance of the transistor.

\[ R_m = \beta \times R_E = 100 \times 100 \Omega = 10,000 \Omega \text{ (assuming that } \beta = 100) \]

The 10 Vpp from the generator is divided between the 10,000 ohm input resistance of the transistor and the 50 ohm internal resistance of the generator. Therefore, there is no significant voltage drop across $R_G$, and the full 10 Vpp is applied to the base of the transistor. The emitter voltage remains at 10 Vpp.

Also, the current through the motor is now produced by the power supply and not the generator, and the transistor looks like a generator with a very low internal resistance.

This internal resistance ($R_O$) is called the output impedance of the emitter follower. You can calculate it using this formula:

\[ R_O = \frac{\text{internal resistance of generator}}{\beta} \]
for the circuit shown in Figure 8-20, if \( R_G = 50 \) ohms and \( \beta = 100 \), \( R_O = 0.5 \) ohms. Therefore, the circuit shown in Figure 8-20 is effectively a generator with an internal resistance of only 0.5 ohms driving a motor with a resistance of 100 ohms. Therefore, the output voltage of 10 \( V_{pp} \) is maintained across the motor.

**Questions**

A. What is the emitter follower circuit used for in this example?

B. Which two properties of the emitter follower are useful in circuits?

**Answers**

A. To drive a load that could not be driven directly by a generator

B. High input resistance and its low output resistance

The questions in this problem apply to the emitter follower circuit discussed in problems 23–25.

**Questions**

A. What is the approximate gain of an emitter follower circuit?

B. What is the phase of the output signal compared to the phase of the input signal?

C. Which has the higher value, the input resistance or the output resistance?

D. Is the emitter follower more effective at amplifying signals or at isolating loads?

**Answers**

A. 1

B. The same phase
You can design an emitter follower circuit using these steps:

1. Specify \( V_E \). This is a DC voltage level, which is usually specified as half the supply voltage.
2. Find \( V_B \). Use \( V_B = V_E + 0.7 \) V.
3. Specify \( R_E \). Often this is a given factor, especially if it is a motor or other load that is being driven.
4. Find \( I_E \) by using the following:
   \[ I_E = \frac{V_E}{R_E} \]
5. Find \( I_B \) by using the following:
   \[ I_B = \frac{I_E}{\beta} \]
6. Find \( I_2 \) by using \( I_2 = 10I_B \).
7. Find \( R_2 \) by using the following:
   \[ R_2 = \frac{V_B}{I_2} \]
8. Find \( R_1 \) by using the following:
   \[ R_1 = \frac{V_S - V_B}{I_2 + I_B} \]
   Usually, \( I_B \) is small enough to be dropped from this formula.
9. Choose the nearest standard values for \( R_1 \) and \( R_2 \).
10. Check that these standard values give a voltage close to \( V_B \). Use the voltage divider formula.

A simple design example illustrates this procedure. Use the values shown in the circuit in Figure 8-21 for this problem.

Questions
Work through Steps 1–10 to find the values of the two bias resistors.

1. \( V_E = \) 
2. \( V_B = \) 
3. \( R_E = \) 
Chapter 8 = Transistor Amplifiers

4. $I_E =$ __________
5. $I_B =$ __________
6. $I_2 =$ __________
7. $R_2 =$ __________
8. $R_1 =$ __________
9. The nearest standard values are as follows:
   $R_1 =$ _________ and $R_2 =$ _________
10. $V_B =$ __________

![Figure 8-21](image)

Answers

Your answers should be close to these values.

1. 5 V (This was given in Figure 8-21.)
2. 5.7 V
3. 1 kΩ (This was given in Figure 8-21.)
4. 5 mA
5. 0.05 mA
6. 0.5 mA
7. 11.4 kΩ
8. 7.8 kΩ
9. The nearest standard values are 8.2 kΩ and 12 kΩ.
10. The standard resistor values result in $V_B = 5.94 \text{ V}$. This is a little higher than the $V_B$ calculated in step 2, but it is acceptable.

$V_E$ is set by the biasing resistors. Therefore, it is not dependent upon the value of $R_E$. Almost any value of $R_E$ can be used in this circuit. The minimum value for $R_E$ is obtained by using this simple equation:

$$R_E = \frac{10 R_2}{\beta}$$

**Analyzing an Amplifier**

Up to now, the emphasis has been on designing a simple amplifier and an emitter follower. This section shows how to “analyze” a circuit that has already been designed. To “analyze” in this case means to calculate the collector DC voltage (the bias point) and find the AC gain. This procedure is basically the reverse of the design procedure.

Start with the circuit shown in Figure 8-22.

**Figure 8-22**

Here are the steps you use to analyze a circuit:

1. Find $V_B$ by using the following:

$$V_B = V_S \times \frac{R_2}{R_1 + R_2}.$$  

2. Find $V_E$ by using $V_E = V_B - 0.7 \text{ V}$. 

3. Find $I_C$ by using the following:

$$I_C = \frac{V_E}{R_E}.$$ 

Note that $I_C = I_E$.

4. Find $V_R$ by using $V_R = R_C \times I_C$.

5. Find $V_C$ by using $V_C = V_S - V_R$. This is the bias point.

6. Find $A_V$ by using the following:

$$A_V = \frac{R_C}{R_E} \text{ or } A_V = \beta \times \frac{R_C}{R_{in}}$$

When you use the second formula, you must find the value of $R_{in}$ (or $h_{ie}$) on the manufacturer’s datasheets for the transistor.

Use the circuit shown in Figure 8-23 for following questions. For these questions, use $\beta = 100$, $R_{in} = 2 \, \text{k}\Omega$ and the values given in the circuit drawing.

![Figure 8-23](image)

**Questions**


1. $V_B =$
2. $V_E =$
3. $I_C =$
4. $V_R =$
5. $V_C =$
6. $A_V =$
Answers

1. \( V_B = 10 \times \frac{22\, \text{k}\Omega}{160\, \text{k}\Omega + 22\, \text{k}\Omega} = 1.2 \, \text{V} \)
2. \( V_E = 1.2 - 0.7 = 0.5 \, \text{V} \)
3. \( I_C = \frac{0.5\, \text{V}}{1\, \text{k}\Omega} = 0.5 \, \text{mA} \)
4. \( V_R = 10\, \text{k}\Omega \times 0.5 \, \text{mA} = 5 \, \text{V} \)
5. \( V_C = 10 \, \text{V} - 5 \, \text{V} = 5 \, \text{V} \) (This is the bias point.)
6. With the capacitor:
   \( A_V = 100 \times \frac{10\, \text{k}\Omega}{2\, \text{k}\Omega} = 500 \) (a large gain)
   Without the capacitor:
   \( A_V = \frac{10\, \text{k}\Omega}{1\, \text{k}\Omega} = 10 \) (a small gain)

You can determine the lowest frequency the amplifier will satisfactorily pass by following these simple steps:

1. Determine the value of \( R_E \).
2. Calculate the frequency at which \( X_C = \frac{R_E}{10} \). Use the capacitor reactance formula. (This is one of those “rules of thumb” that can be mathematically justified, and gives reasonably accurate results in practice.)

Questions

For the circuit shown in Figure 8-23, find the following.

A. \( R_E = \) ________
B. \( f = \) ________

Answers

A. \( R_E = 1 \, \text{k}\Omega \) (given in the circuit diagram)
274 Chapter 8  Transistor Amplifiers

B. So, we will set $X_C = 100$ ohms, and use this formula:

$$X_C = \frac{1}{2\pi f C}$$

100 ohms $= \frac{0.16}{f \times 50 \mu F}$ since $0.16 = \frac{1}{2\pi}$

So:

$$f = \frac{0.16}{100 \times 50 \times 10^{-6}} = 32 \text{ Hz}$$

30 For the circuit shown in Figure 8-24 follow the steps given in problems 28 and 29 to answer the following questions.

![Figure 8-24](image_url)

Questions

1. $V_B =$
2. $V_E =$
3. $I_C =$
4. $V_R =$
5. $V_C =$
6. With capacitor: $A_V =$
   Without capacitor: $A_V =$
7. Low frequency check: $f =$
The JFET as an Amplifier

Chapter 3 discussed the junction field effect transistor (JFET) in problems 29–32 and Chapter 4 discussed JFET in problems 37–41. You may wish to review these problems before answering the questions in this problem. Figure 8-25 shows a typical biasing circuit for a JFET.

A. What type of JFET is depicted in the circuit?
276 Chapter 8 = Transistor Amplifiers

B. What value of $V_{GS}$ would you need to turn the JFET completely ON?

C. What drain current flows when the JFET is completely ON?

D. What value of $V_{GS}$ would you need to turn the JFET completely OFF?

E. When a JFET is alternately turned completely ON and OFF in a circuit, what type of component are you using the JFET as?

Answers

A. N-channel JFET.
B. $V_{GS} = 0$ V to turn the JFET completely ON.
C. Drain saturation current ($I_{DSS}$).
D. $V_{GS}$ should be a negative voltage for the N-channel JFET to turn it completely OFF. The voltage must be larger than or equal to the cutoff voltage.
E. The JFET is being used as a switch.

32 You can use a JFET to amplify AC signals by biasing the JFET with a gate to source voltage about halfway between the ON and OFF states. You can find the drain current that flows in a JFET biased to a particular $V_{GS}$ by using the following equation for the transfer curve:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(off)}}\right)^2$$

In this equation, $I_{DSS}$ is the value of the drain saturation current and $V_{GS(off)}$ is the gate to source voltage at cutoff. Both of these are indicated on the transfer curve shown in Figure 8-26.

For the transfer curve shown in Figure 8-26, $I_{DSS} = 12$ mA and $V_{GS(off)} = -4$ V. Setting the bias voltage at $V_{GS} = -2$ V returns the following value for the drain current:

$$I_D = 12\text{ mA} \times \left(1 - \frac{-2}{-4}\right)^2 = 12\text{ mA} \times (0.5)^2 = 3\text{ mA}$$
Questions

Calculate the drain current for the following:

A. \( V_{GS} = -1.5 \)

B. \( V_{GS} = -0.5 \) volts.

Answers

A. 4.7 mA

B. 9.2 mA

NOTE Datasheets give a wide range of possible \( I_{DSS} \) and \( V_{GS(0ff)} \) values for a given JFET. You may have to resort to actually measuring these with the method shown in Chapter 4, problem 38.

For the circuit shown in Figure 8-25, you choose the value of the drain to source voltage, \( V_{DS} \), then calculate the value of the load resistor, \( R_D \), by using the following equation:

\[
R_D = \frac{(V_{DD} - V_{DS})}{I_D}
\]

For this problem, use \( I_D = 3 \) mA, and a drain supply voltage \( (V_{DD}) \) of 24 V. Calculate the value of \( R_D \) that results in the specified value of \( V_{DS} \); this is also the DC output voltage of the amplifier.

Question

Calculate the value of \( R_D \) that will result in \( V_{DS} = 10 \) V.
### Answer

\[ R_D = \frac{(V_{DD} - V_{DS})}{I_D} = \frac{(24 \text{ V} - 10 \text{ V})}{3 \text{ mA}} = \frac{14 \text{ V}}{3 \text{ mA}} = 4.67 \text{ k}\Omega \]

### Question

Calculate \( I_D \), using the formula in problem 32, for the maximum and minimum values of \( V_{GS} \).

### Answer

For \( V_{GS} = -1.75 \text{ V} \), \( I_D = 3.8 \text{ mA} \).

For \( V_{GS} = -2.25 \text{ V} \), \( I_D = 2.3 \text{ mA} \).

### Question

For the circuit shown in Figure 8-27, calculate the values of \( V_{RD} \), the voltage drop across resistor \( R_D \), for the maximum and minimum values of \( I_D \) you calculated in problem 34.
Answer

For $I_D = 3.8 \text{ mA}$, $V_{RD} = 3.8 \text{ mA} \times 4.67 \text{ k}\Omega = 17.7 \text{ V}$
For $I_D = 2.3 \text{ mA}$, $V_{RD} = 2.3 \text{ mA} \times 4.67 \text{ k}\Omega = 10.7 \text{ V}$

This corresponds to a $7 \text{ V}_{PP}$ sine wave.

36 As the voltage drop across $R_D$ changes, the output voltage also changes.

Question

For the circuit shown in Figure 8-27, calculate the values of $V_{out}$ for the maximum and minimum values of $V_{RD}$ you calculated in problem 35.

Answer

For $V_{RD} = 17.7 \text{ V}$, $V_{out} = V_{DD} - V_{RD} = 24 \text{ V} - 17.7 \text{ V} = 6.3 \text{ V}$
For $V_{RD} = 10.7 \text{ V}$, $V_{out} = V_{DD} - V_{RD} = 24 \text{ V} - 10.7 \text{ V} = 13.3 \text{ V}$

Therefore, the output signal is a $7 \text{ V}_{PP}$ sine wave.

37 Table 8-1 shows the results of the calculations made in problems 34–36 including the DC bias point.

Table 8-1

<table>
<thead>
<tr>
<th>$V_{GS}$</th>
<th>$I_D$</th>
<th>$V_{RD}$</th>
<th>$V_{OUT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-1.75 \text{ V}$</td>
<td>3.8 mA</td>
<td>17.7 V</td>
<td>6.3 V</td>
</tr>
<tr>
<td>$-2.0 \text{ V}$</td>
<td>3.0 mA</td>
<td>14.0 V</td>
<td>10.0 V</td>
</tr>
<tr>
<td>$-2.25 \text{ V}$</td>
<td>2.3 mA</td>
<td>10.7 V</td>
<td>13.3 V</td>
</tr>
</tbody>
</table>

Question

What are some characteristics of the AC output signal?

Answer

The output signal is a $7 \text{ V}_{PP}$ sine wave with the same frequency as the input sine wave. Note that, as the input voltage on $V_{GS}$ increases (toward
0 V), the output decreases. As the input voltage decreases (becomes more negative), the output voltage increases. This means that the output is 180 degrees out of phase with the input.

You can calculate the AC voltage gain for the amplifier discussed in problems 34–37 by using the following formula:

\[ A_v = \frac{-V_{out}}{V_{in}} \]

The negative sign in this formula indicates that the output signal is 180 degrees out of phase from the input signal.

**Question**

Calculate the AC voltage gain for the amplifier discussed in problems 34–37.

**Answer**

\[ A_V = \frac{-7\text{ V}_{pp}}{0.5\text{ V}_{pp}} = -14 \]

You can also calculate the AC voltage gain by using the following formula:

\[ A_v = -(g_m)(R_D) \]

In this equation, \( g_m \) is the *transconductance* and is a property of the JFET. It is also called the *forward transfer admittance*. A typical value for \( g_m \) is usually provided for JFETs in the manufacturers' datasheet. You can also use the data in Table 8-1 to calculate \( g_m \) using the following formula:

\[ g_m = \frac{\Delta I_D}{\Delta V_{GS}} \]

In this equation, \( \Delta \) indicates the change or variation in \( V_{GS} \) and the corresponding drain current. The unit for transconductance is mhos.

**Questions**

A. Using the data from Table 8-1, what is the value of \( g_m \) for the JFET used in the amplifier?
The JFET as an Amplifier

B. What is the corresponding AC voltage gain?

---

**Answers**

A. \( \text{gm} = \frac{1.5 \text{ mA}}{0.5 \text{ V}} = 0.003 \text{ mhos} \)

B. \( A_v = -(0.003)(4670) = -14 \), the same result you found in problem 38.

---

40  Design a JFET common source amplifier using a JFET with \( I_{DSS} = 14.8 \text{ mA} \) and \( V_{GS(off)} = -3.2 \text{ V} \). The input signal is 40 mV_{pp}. The drain supply is 24 V.

**Questions**

A. Determine the value of \( V_{GS} \) that will bias the JFET at a voltage near the middle of the transfer curve.

B. Calculate the drain current when \( V_{GS} \) is at the value determined in step A, using the formula in problem 32.

C. Choose a value of \( V_{DS} \) and calculate the value of \( R_D \) using the formula in problem 33.

D. Calculate the maximum and minimum values of \( V_{GS} \) that result from the input signal, and the corresponding values of drain current using the procedure in problem 34.

E. Calculate the maximum and minimum values of \( V_{out} \) that result from the input signal using the procedures in problems 35 and 36.

F. Calculate the gain of the amplifier.
282 Chapter 8 = Transistor Amplifiers

Answers

A. $V_{GS} = -1.6 \text{ V}$
B. $I_D = 3.7 \text{ mA}$
C. For $V_{DS} = 10 \text{ V}$,
   
   $$R_D = \frac{14 \text{ V}}{3.7 \text{ mA}} = 3780 \text{ ohms}$$

D. $V_{GS}$ will vary from $-1.58$ to $-1.62 \text{ V}$. Use the formula to calculate values of drain current. $I_D$ will vary from $3.79$ to $3.61 \text{ mA}$.
E. $V_{RD}$ will vary from $14.3$ to $13.6 \text{ V}$. Therefore, $V_{out}$ will vary from $9.7$ to $10.4 \text{ V}$.
F. $A_v = \frac{-0.7}{0.04} = -17.5$

41 Use the results of problem 40, question D, to answer the following question.

Question

Calculate the transconductance of the JFET and the AC voltage gain using the formulas discussed in problem 39.

Answer

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} = \frac{0.18 \text{ mA}}{40 \text{ mV}} = 0.0045 \text{ mhos}$$

$$A_v = -(g_m)(R_D) = -(0.0045)(3780) = -17$$

This is very close to the value you found in problem 40, question F.

42 Figure 8-28 shows a JFET amplifier circuit that uses one power supply, rather than separate power supplies for the drain and gate used in the amplifier discussed in problems 34–41.

The DC voltage level of the gate is zero because the gate is tied to ground through $R_G$. Therefore, the voltage drop across $R_S$ becomes the gate to source voltage. To design the circuit, you must find values for both $R_S$ and $R_D$. Use
the same bias point for this problem as you used for the amplifier discussed in problems 34–41: $V_{GS} = -2\,\text{V}$ and $I_D = 3\,\text{mA}$. Follow these steps:

1. Calculate $R_S$, using the following formula, recognizing that $V_{RS} = V_{GS}$:

$$R_S = \frac{V_{RS}}{I_D} = \frac{V_{GS}}{I_D}$$

![Figure 8-28](image)

2. Calculate $R_D$ using the following formula, using $V_{DS} = 10\,\text{V}$, the same value you used for the amplifier discussed in problems 34–41:

$$R_D = \frac{(V_{DD} - V_{DS} - V_S)}{I_D}$$

3. Calculate $X_{CS}$ using the following formula:

$$X_{CS} = \frac{R_S}{10}$$

Then, calculate $C_S$ using the following formula:

$$X_{CS} = \frac{1}{2\pi f_C S}$$

4. Calculate the peak-to-peak output voltage using the procedures shown in problems 34–36.

5. Calculate the AC voltage gain using this formula:

$$A_V = -\frac{V_{out}}{V_{in}}$$

**NOTE** Choose the value of $C_S$ so that its reactance is less than 10 percent of $R_S$ at the lowest frequency you need to amplify. The DC load for the JFET is $R_D$ plus $R_S$. The AC load is $R_D$, because $C_S$ bypasses the AC signal around $R_S$, which keeps the DC operating point stable. The use of $C_S$ reduces the gain slightly because you now use a smaller $R_D$ to calculate the AC voltage swings at the output.
Questions

A. What is the value of $R_S$?

B. What is the value of $R_D$?

C. What is the value of $C_S$? Assume $f = 1$ kHz.

D. Calculate the peak-to-peak $V_{out}$ for $V_{in} = 0.5$ Vpp.

E. What is the voltage gain?

Answers

A. $R_S = \frac{2 \text{ V}}{3 \text{ mA}} = 667$ ohms

B. $R_D = \frac{12 \text{ V}}{3 \text{ mA}} = 4$ kΩ

C. $X_{CS} = 66.7$ ohms, $C_S = 2.4$ µF

D. The AC drain current will still vary from 3.8 to 2.3 mA, as in problem 37. The voltage across $R_D$ is now 6 Vpp, because $R_D$ is 4 kΩ. The output voltage is also 6 Vpp.

E. $A_V = \frac{-6}{0.5} = -12$ The gain is 12.

The Operational Amplifier

The operational amplifier (op-amp) in use today is actually an integrated circuit (IC). This means that the device has numerous transistors and other components constructed on a very small silicon chip. These IC op-amps are much smaller and, therefore, more practical than an amplifier with equivalent performance that is made with discrete components.
It is possible to purchase op-amps in different case configurations. Some of these configurations are the TO metal package, the flat pack, and the DIP package. You will also find 2 op-amps (dual) or 4 op-amps (quad) in a single IC. Their size, low cost, and wide range of applications have made op-amps so common today that they are thought of as a circuit device or component in and of themselves, even though a typical op-amp may contain 20 or more transistors in its design. The characteristics of op-amps very closely resemble those of an ideal amplifier. Following are these characteristics:

- High input impedance (does not require input current)
- High gain (used for amplifying small signal levels)
- Low output impedance (not affected by the load)

**Questions**

A. What are the advantages of using op-amps?

B. Why are op-amps manufactured using IC techniques?

**Answers**

A. Small size, low cost, wide range of applications, high input impedance, high gain, and low output impedance.

B. Because of the large numbers of transistors and components that are required in the design of an op-amp, they must be constructed on a single, small silicon chip using IC manufacturing techniques to be of a reasonable size.

Figure 8-29 shows the schematic symbol for an op-amp.
An input at the inverting input results in an output that is 180 degrees out of phase with the input. An input at the non-inverting input results in an output that is in phase with the input. Both positive and negative voltage supplies are required, and the datasheet will specify their values for the particular op-amp you are using. Datasheets usually contain circuit diagrams showing how you should connect external components to the op-amp for specific applications. These circuit diagrams (showing how a particular op-amp can be used for various applications) can be very useful to the designer or the hobbyist.

Questions
A. How many terminals does the op-amp require, and what are their functions?

B. How is the output related to the input when the input is connected to the inverting input?

Answers
A. 5 — two input terminals, one output terminal, two power supply terminals.
B. The output is 180 degrees out of phase with the input.

Figure 8-30 shows a basic op-amp circuit. The input signal is connected to an inverting input, as indicated by the negative sign. Therefore, the output signal will be 180 degrees out of phase with the input.

Figure 8-30
You can find the AC voltage gain for the circuit using the following equation:

\[ A_v = \frac{-R_F}{R_{in}} \]

Resistor \( R_F \) is called a feedback resistor, because it forms a feedback path from the output to the input. Many op-amp circuits use a feedback loop. Because the op-amp has such a high gain, it is easy to saturate it (at maximum gain) with small voltage differences between the two input terminals. The feedback loop allows the operation of the op-amp at lower gains, allowing a wider range of input voltages. When designing a circuit, you can choose the value of the feedback resistor to achieve a specific voltage gain. The role of the capacitors in the diagram is to block DC voltages.

**Questions**

A. Calculate the value of \( R_F \) that would give the amplifier an AC voltage gain of 120.

B. Calculate AC \( V_{out} \) if AC \( V_{in} \) is 5 mV rms.

**Answers**

A. \( R_F = 120 \times 10 \, \text{k}\Omega = 1.2 \, \text{M}\Omega \)

B. \( V_{out} = 120 \times 5 \, \text{mV} = 0.6 \, \text{V}_{rms} \)

The output signal is inverted with respect to the input signal.

Use the op-amp circuit shown in Figure 8-30 to build an amplifier with an output voltage of 12 Vpp, an AC voltage gain of 50, and with \( R_{in} = 6.8 \, \text{k}\Omega \).

**Questions**

A. Calculate the value of \( R_F \).
B. Calculate the value of $V_{in}$ required to produce the output voltage specified earlier.

**Answers**

A. $R_F = 50 \times 6.8 \text{k}\Omega = 340 \text{k}\Omega$

B. $V_{in} = \frac{12V_{pp}}{50} = 0.24V_{pp}$ or $0.168V_{rms}$

**Summary**

This chapter introduced the most common types of amplifiers in use today: the common emitter BJT, the common source JFET, and the op-amp. At best, this chapter has only scratched the surface of the world of amplifiers. In fact, there are many variations and types of amplifiers. Still, the terminology and design approach you learned here should give you a basic foundation for further study.

Following are the key skills you gained in this chapter:

- How to design a simple amplifier when the bias point and the gain are specified
- How to do the same for an emitter follower
- How to analyze a simple amplifier circuit

**Self-Test**

These questions test your understanding of the material presented in this chapter. Use a separate sheet of paper for your diagrams or calculations. Compare your answers with the answers provided following the test.

1. What is the main problem with the amplifier circuit shown in Figure 8-1?

2. What is the gain formula for that circuit?
3. Does it have a high or low gain?

Use the circuit shown in Figure 8-31 for questions 4–8.

![Figure 8-31](image)

4. Design an amplifier so that the bias point is 5 V and the AC voltage gain is 15. Assume $\beta = 75$, $R_{\text{in}} = 1.5 \, \text{k}\Omega$, $V_S = 10 \, \text{V}$, and $R_C = 2.4 \, \text{k}\Omega$. Add capacitor $C_E$ to the circuit and calculate a suitable value to maintain maximum AC voltage gain at 50 Hz. What is the approximate value of this gain?

5. Repeat question 4 with these values: $V_S = 28 \, \text{V}$, $\beta = 80$, $R_{\text{in}} = 1 \, \text{k}\Omega$, and $R_C = 10 \, \text{k}\Omega$. The bias point should be 14 V, and the AC voltage gain 20.

6. Repeat question 4 with these values: $V_S = 14 \, \text{V}$, $\beta = 250$, $R_{\text{in}} = 1 \, \text{k}\Omega$, and $R_C = 15 \, \text{k}\Omega$. The bias point should be 7 V, and the AC voltage gain 50.

7. Design an emitter follower amplifier given that $V_S = 12 \, \text{V}$, $R_E = 100 \, \text{ohms}$, $\beta = 35$, $V_E = 7 \, \text{V}$, $R_C = 0 \, \text{ohms}$.

8. Design an emitter follower amplifier given that $V_S = 28 \, \text{V}$, $R_E = 100 \, \text{ohms}$, $\beta = 35$, $V_E = 7 \, \text{V}$, $R_C = 0 \, \text{ohms}$.

In questions 9–11, the resistance and $\beta$ values are given. Analyze the circuit to find the bias point and the gain.
290 Chapter 8: Transistor Amplifiers

9. $R_1 = 16 \, k\Omega, R_2 = 2.2 \, k\Omega, R_E = 100 \, \text{ohms}, R_C = 1 \, k\Omega, \beta = 100, V_S = 10 \, V$

10. $R_1 = 36 \, k\Omega, R_2 = 3.3 \, k\Omega, R_E = 110 \, \text{ohms}, R_C = 2.2 \, k\Omega, \beta = 50, V_S = 12 \, V$

11. $R_1 = 2.2 \, k\Omega, R_2 = 90 \, k\Omega, R_E = 20 \, \text{ohms}, R_C = 300 \, k\Omega, \beta = 30, V_S = 50 \, V$

12. The circuits from questions 4 and 5 are connected to form a two-stage amplifier. What is the gain when there is an emitter bypass capacitor for both transistors? When the capacitor is not used in either of them?

13. Design a JFET amplifier using the circuit shown in Figure 8-27. The characteristics of the JFET are $I_{DSS} = 20 \, \text{mA}$ and $V_{GS(off)} = -4.2 \, V$. The desired value of $V_{DS}$ is 14 V. Find the value of $R_D$.

14. If the transconductance of the JFET used in question 13 is 0.0048 mhos, what is the voltage gain?

15. If the desired output is 8 $V_{pp}$ for the JFET of questions 13 and 14, what should the input be?

16. Design a JFET amplifier using the circuit in Figure 8-28. The JFET characteristics are $I_{DSS} = 16 \, \text{mA}$ and $V_{GS(off)} = -2.8 \, V$. Using a $V_{DS}$ of 10 V, find the values of $R_S$, $C_S$, and $R_D$.

17. If the input to the JFET in question 16 is 20 mV $pp$, what is the AC output voltage and what is the gain?

18. For the op-amp circuit shown in Figure 8-30, what is the output voltage if the input is 50 mV and the feedback resistor is 750 k$\Omega$?
\textbf{Answers to Self-Test}

If your answers do not agree with those provided here, review the problems in parentheses before you go on to the next chapter.

1. Its bias point is unstable, and its gain varies with temperature. Also, you cannot guarantee what the gain will be. (problem 10)

2. 
\[ A_V = \beta \times \frac{R_C}{R_{\text{in}}} \] (problem 10)

3. Usually the gain is quite high. (problem 10)

For Numbers 4–6, suitable values are given. Yours should be close to these.

4. \( R_1 = 29 \, k\Omega, \, R_2 = 3.82 \, k\Omega, \, R_E = 160 \, \text{ohms}, \, C_E = 200 \, \mu\text{F}, \, A_V = 120 \) (problems 17–22)

5. \( R_1 = 138 \, k\Omega, \, R_2 = 8 \, k\Omega, \, R_E = 500 \, \text{ohms}, \, C_E = 64 \, \mu\text{F}, \, A_V = 800 \) (problems 17–22)

6. \( R_1 = 640 \, k\Omega, \, R_2 = 45 \, k\Omega, \, R_E = 300 \, \text{ohms}, \, C_E = 107 \, \mu\text{F}, \, A_V = 750 \) (problems 17–22)

7. \( R_1 = 8 \, k\Omega; \, R_2 = 11.2 \, k\Omega \) (problem 27)

8. \( R_1 = 922 \, \text{ohms}; \, R_2 = 385 \, \text{ohms} \) (problem 27)

9. \( V_C = 5 \, V, \, A_V = 10 \) (problems 28–30)

10. \( V_C = 6 \, V, \, A_V = 20 \) (problems 28–30)

11. \( V_C = 30 \, V, \, A_V = 15 \) (problems 28–30)

12. When the capacitor is used, \( A_V = 120 \times 800 = 96,000. \) (problems 17–22)

When the capacitor is not used, \( A_V = 15 \times 20 = 300. \)

13. Use \( V_{GS} = -2.1 \, V, \) then \( I_D = 5 \, mA, \) \( R_D = 2 \, k\Omega. \) (problems 31–33)

14. \( A_V = -9.6 \, mV_{pp} \) (problem 39)

15. \( V_{in} = 83 \, mV_{pp} \) (problem 38)
### Chapter 8 - Transistor Amplifiers

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
</table>
| 16.     | Use $V_{GS} = -1.4$ V, then $I_D = 4$ mA. (problem 42)  
$R_S = 350$ ohms  
$C_S = 4.5$ $\mu$F (assume $f = 1$ kHz)  
$R_D = 3.15$ k$\Omega$ |
| 17.     | $V_{GS}$ varies from $-1.39$ to $-1.41$ V, $I_D$ varies from 4.06 to 3.94 mA, $V_{out}$ will be 400 mV$\text{pp}$,  
$A_v = \frac{-400}{20} = -20$ (problem 42) |
| 18.     | $A_v = -75$, $V_{out} = 3.75$ V (problem 45) |
This chapter introduces you to oscillators. An oscillator is a circuit that produces a continuous output signal. There are many types of oscillator circuits that are used extensively in electronic devices. Oscillators can produce a variety of different output signals, such as sine waves, square waves, or triangle waves.

When the output signal of an oscillator is a sine wave of constant frequency, the circuit is called a sine wave oscillator. Radio and television signals are sine waves transmitted through the air, and the 120 V AC from the wall plug is a sine wave, as are many test signals used in electronics.

This chapter introduces three basic sine wave oscillators. They all rely on resonant LC circuits as described in Chapter 7 to set the frequency of the sine wave.

When you complete this chapter, you will be able to do the following:
- Recognize the main elements of an oscillator.
- Differentiate between positive and negative feedback.
- Specify the type of feedback that causes a circuit to oscillate.
- Specify at least two methods of obtaining feedback in an oscillator circuit.
- Understand how resonant LC circuits set the frequency of an oscillator.
- Design a simple oscillator circuit.

**Understanding Oscillators**

An oscillator can be divided into three definite sections: (1) an amplifier; (2) the feedback connections; and (3) the components that set frequency.
The amplifier replaces the switch in the basic oscillator circuit, introduced in problem 35 of Chapter 7 (Figure 7-32).

**Question**

Draw an oscillator circuit, and label the parts. Use a separate sheet of paper for your drawing.

**Answer**

See Figure 9-1.

![Figure 9-1](image)

When you connect the output of an amplifier to its input, you get feedback. If the feedback is “out of phase” with the input, as shown in Figure 9-2, then the feedback is negative.

![Figure 9-2](image)

When the signal from the collector is fed back to the base of the transistor through a feedback resistor (Rf), as in the circuit shown in Figure 9-3, the feedback signal is out of phase with the input signal. Therefore, the feedback is negative.
Negative feedback is used to stabilize the operation of an amplifier by doing the following:

- Preventing the DC bias point and gain of an amplifier from being affected by changes in temperature
- Reducing distortion in amplifiers, thereby improving the quality of the sound

**Questions**

A. Why would feedback signals be used in quality audio amplifiers?

B. What kind of feedback do they have?

**Answers**

A. To reduce distortion
B. Negative feedback

If the feedback from the output is in phase with the input, as shown in Figure 9-4, the circuit’s feedback is *positive.*

**Figure 9-3**

**Figure 9-4**
In the circuit shown in Figure 9-5, the collector of the second transistor is connected to the base of the first transistor. Because the output signal at the collector of the second transistor is in phase with the input signal at the base of the first transistor, this circuit has positive feedback.

Figure 9-5

Positive feedback can cause an amplifier to oscillate even when there is no external input.

Questions

A. What type of feedback is used to stabilize an amplifier?
B. What type of feedback is used in oscillators?
C. What parts of an amplifier do you connect to produce feedback?

Answers

A. Negative feedback
B. Positive feedback
C. Connect the output of an amplifier to its input.

The amplifier shown in Figure 9-6 is the same type of amplifier that was discussed in problems 11–18 of Chapter 8. It is called a common emitter amplifier.
Questions

A. What effect would negative feedback have on this amplifier?

B. What effect would positive feedback have on this amplifier?

Answers

A. Stabilize it, reduce gain, and reduce distortion.

B. Cause it to oscillate.

In the circuit shown in Figure 9-6, an input signal that is applied to the base will be amplified.

Questions

A. What is the basic formula for an amplifier’s voltage gain?

B. What is the voltage gain formula for the amplifier circuit shown in Figure 9-6?
### Answers

A. \( A_V = \beta \times \frac{R_L}{R_{in}} \)

B. \( A_V = \frac{R_L}{R_E} = \frac{R_C}{R_E} \)
   (as discussed in problem 12 of Chapter 8)

6. In the circuit shown in Figure 9-7, an input signal is applied to the emitter of the transistor instead of the base. This circuit is called a **common base amplifier**.

![Figure 9-7](image)

**NOTE** When you apply a signal to the emitter, it changes the voltage drop across the base-emitter diode, just as an input signal applied to the base does. Therefore, a signal applied to the emitter changes the base current and the collector current, just as if you had applied a signal to the base.

The voltage gain formula for this type of amplifier can be simplified because the input impedance to the amplifier is so low when the signal is fed into the emitter that you can discount it. This results in the following voltage gain formula for the common base amplifier:

\[ A_V = \frac{R_L}{R_S} \]
RS is the output resistance or impedance of the source or generator. It is also called the *internal impedance* of the source.

**Question**

What is the voltage gain formula for the circuit shown in Figure 9-7?

**Answer**

\[ AV = \frac{R_L}{R_S} = \frac{R_C}{R_S}, \text{ (R}_C\text{ is the load in this circuit)} \]

7. Notice that the input and output sine waves in Figure 9-7 are in phase. Although the signal is amplified, it is not inverted.

**Questions**

A. What happens to the input signal to the amplifier when you apply it to the emitter instead of the base?

B. Is the input impedance of the common base amplifier high or low compared to the common emitter amplifier?

C. What is the gain formula for the common base amplifier?

**Answers**

A. Amplified and not inverted

B. Low

C. \[ AV = \frac{R_L}{R_S} = \frac{R_C}{R_S} \]

8. Figure 9-8 shows an amplifier circuit with a parallel inductor and capacitor connected between the collector of the transistor and ground. A parallel inductor and capacitor circuit is sometimes called a *tuned* (or *resonant*) load.
In this circuit, the inductor has a very small DC resistance, which could pull the collector DC voltage down to near 0 V. Therefore, you include capacitor \(C_C\) in the circuit to allow AC signals to pass through the LC circuit while preventing the collector DC voltage from being pulled down to 0 V.

**Questions**

A. What term would you use to describe the load in this circuit?

B. Does the circuit contain all three components of an oscillator at this point?

**Answers**

A. Resonant or tuned

B. No, the feedback connections are missing.

**NOTE** The circuit in Figure 9-8 does not have an input signal either to the emitter or to the base. By adding a feedback connection to a parallel LC circuit, you provide an input signal to the emitter or base, as explained later in this chapter.

9. Write the voltage gain formulas for the following circuits. Refer to the circuits and voltage gain formulas in problems 4–6, if necessary.

**Questions**

A. Common emitter circuit

B. Common base circuit
Understanding Oscillators

**Answers**

A. \[ A_V = \frac{R_C}{R_E} \]

B. \[ A_V = \frac{R_C}{R_S} \]

10 You can use common emitter and common base amplifier circuits in oscillators, and in each case, you would usually also include an extra capacitor.

In a common emitter amplifier, you can add a capacitor (\(C_E\)) between the emitter and ground, as discussed in problems 19 and 20 of Chapter 8.

In a common base circuit, you can add a capacitor (\(C_B\)) between the base and the ground, as is shown in Figure 9-7.

**Question**

What is the general effect in both cases?

**Answer**

An increase in the gain of the amplifier.

The gain is increased to the point where you can consider it “large enough” to use the amplifier as an oscillator. When these capacitors are used in either a common emitter or common base amplifier, it is not usually necessary to calculate the gain of the amplifier.

11 An LC circuit has a resonance frequency that you can determine using the methods discussed in problems 6–12 of Chapter 7. When you use an LC circuit in an oscillator, the output signal of the oscillator will be at the resonance frequency of the LC circuit.

**Question**

What is the formula for the oscillation (or resonant) frequency?
302  Chapter 9  Oscillators

**Answer**

\[ f_r = \frac{1}{2\pi \sqrt{LC}} \]

In practice, the actual measured frequency is never quite the same as the calculated frequency. The capacitor and inductor values are not exact, and other stray capacitances in the circuit affect the frequency. When you need to set an exact frequency, use an adjustable capacitor or inductor.

Figure 9-9 shows the parallel LC circuit connected between the collector and the supply voltage, rather than between the collector and ground (as in Figure 9-8).

![Figure 9-9](image)

You can use this circuit and the circuit shown in Figure 9-8 to selectively amplify one frequency far more than others.

**Questions**

A. What would you expect this one frequency to be?

B. Write the formula for the impedance of the circuit at the resonance frequency.

C. What is the AC voltage gain at this frequency?
Answers

A. The resonance frequency
B. \[ Z = \frac{L}{C \times r} \]
   where \( r \) is the DC resistance of the coil
C. \[ A_V = \frac{Z}{R_E} \]

18 Because of the very low DC resistance of the coil, the DC voltage at the collector is usually very close to the supply voltage (\( V_S \)). In addition, the AC output voltage positive peaks can exceed the DC level of the supply voltage. With large AC output, the positive peaks can actually reach 2\( V_S \), as shown in Figure 9-10.

![Figure 9-10](image)

Question

Indicate which of the following is an accurate description of the circuit in Figure 9-10:

A. Oscillator
B. Tuned amplifier
C. Common base circuit
D. Common emitter circuit
Feedback

To convert an amplifier into an oscillator, you must connect a portion of the output signal to the input. This feedback signal must be in phase with the input signal to induce oscillations.

Figure 9-11 shows three methods you can use to provide a feedback signal from a parallel LC circuit. Each is named for its inventor.

In the Colpitts method, the feedback signal is taken from a connection between two capacitors that form a voltage divider. In the Hartley method, the feedback signal is taken from a tap partway down the coil. Therefore, an inductive voltage divider determines the feedback voltage. The Armstrong method uses a step down transformer (an inductor with an extra coil with fewer turns than the main coil). In all three of these methods, between one-tenth and a half of the output must be used as feedback.

Questions

A. Where is the feedback taken from in a Colpitts oscillator?

B. What type of oscillator uses a tap on the coil for the feedback voltage?
C. What type does not use a voltage divider?

---

**Answers**

A. A capacitive voltage divider
B. Hartley
C. Armstrong

---

15 The output voltage appears at one end of the parallel LC circuit shown in Figure 9-12, and the other end is effectively at ground. The feedback voltage $V_f$ is taken between the junction of the two capacitors.

![Figure 9-12](image)

**Question**

Using the voltage divider formula, what is $V_f$?

---

**Answer**

$$V_f = \frac{V_{out} X_{C2}}{(X_{C1} + X_{C2})}$$

which becomes

$$V_f = \frac{V_{out} C_1}{(C_1 + C_2)}$$
To find the resonance frequency in this circuit, first find the equivalent total capacitance $C_T$ of the two series capacitors. You then use $C_T$ in the resonance frequency formula.

**Questions**

A. What is the formula for $C_T$?

B. What is the resonance frequency formula for the Colpitts oscillator?

**Answers**

A. $C_T = \frac{C_1 C_2}{C_1 + C_2}$

B. $f_r = \frac{1}{2\pi \sqrt{L C_T}}$

if $Q$ is equal to or greater than 10

**NOTE** If $Q$ is less than 10, you can use one of the following two formulas to calculate the resonance frequency for a parallel LC circuit:

$$f_r = \frac{1}{2\pi \sqrt{L C}} \sqrt{1 - \frac{r^2}{L}}$$

or

$$f_r = \frac{1}{2\pi \sqrt{L C}} \sqrt{\frac{Q^2}{1 + Q^2}}$$

**Figure 9-13** shows a parallel LC circuit in which the feedback voltage is taken from a tap $N_1$ turns from one end of a coil, and $N_2$ turns from the other end.

![Figure 9-13](image-url)
You can calculate the feedback voltage with a voltage divider formula that uses the number of turns in each part of the coil.

\[ V_f = V_{out} \times \frac{N_1}{N_1 + N_2} \]

The manufacturer should specify \( N_1 \) and \( N_2 \).

**Questions**

A. Who invented this feedback method?

B. When you divide \( V_f \) by \( V_{out} \), what should the result be?

**Answers**

A. Hartley

B. Between one-tenth and one-half

Figure 9-14 shows a parallel LC circuit in which the feedback voltage is taken from the secondary coil of a transformer. The formula used to calculate the output voltage of a secondary coil is covered in problem 6 of Chapter 10.

**Question**

Who invented this type of oscillator?
19. For each of the feedback methods described in the last few problems, the voltage fed back from the output to the input is a fraction of the total output voltage ranging between one-tenth and one-half of $V_{out}$.

To ensure oscillations, the product of the feedback voltage and the amplifier voltage gain must be greater than 1.

$$A_V \times V_f > 1$$

It is usually easy to achieve this because $A_v$ is much greater than 1.

No external input is applied to the oscillator. Its input is the small part of the output signal that is fed back. If this feedback is of the correct phase and amplitude, the oscillations start spontaneously and continue as long as power is supplied to the circuit.

The transistor amplifier amplifies the feedback signal to sustain the oscillations, and converts the DC power from the battery or power supply into the AC power of the oscillations.

**Questions**

A. What makes an amplifier into an oscillator?

B. What input does an amplifier need to become an oscillator?

**Answers**

A. A resonant LC circuit with feedback of the correct phase and amount

B. None. Oscillations will happen spontaneously if the feedback is correct.

**The Colpitts Oscillator**

20. Figure 9-15 shows a Colpitts oscillator circuit, the simplest of the LC oscillators to build.
The feedback signal is taken from the capacitive voltage divider and fed to the emitter. This connection provides a feedback signal to the emitter in the phase required to provide positive feedback.

In this circuit, the reactance of capacitor $C_B$ is low enough for the AC signal to pass through it, rather than passing through $R_2$. Capacitor $C_E$ should have a reactance, $X_{CB}$, of less than 160 ohms at the oscillation frequency. If $R_2$ happens to be smaller than $1.6 \, \text{k}\Omega$, choose a value of $X_{CB}$ that is less than one-tenth of $R_2$.

**Question**

For the circuit shown in Figure 9-15, what is your first estimate for $C_B$? Assume that $f_i$ is equal to 1 kHz and that $X_c$ equals 160 ohms.

**Answer**

$$X_{CB} = 160 \, \text{ohms} = \frac{1}{2\pi f C_B} = \frac{1}{2 \times \pi \times 10^3 \times C_B}$$

Therefore, $C_B = 1 \, \mu\text{F}$; larger values of $C_B$ also work.

Use the Colpitts oscillator component values shown in Figure 9-15 to answer the following questions.
Chapter 9 Oscillators

Questions

A. What is the effective total capacitance of the two series capacitors in the tuned circuit?
   \[ C_T = \boxed{0.067 \mu F} \]

B. What is the oscillator frequency?
   \[ f_r = \boxed{26.75 \text{ kHz}} \]

C. What is the impedance of the tuned circuit at this frequency?
   \[ Z = \boxed{373 \text{ ohms}} \]

D. What fraction of the output voltage is fed back?
   \[ V_f = \boxed{\frac{1}{3}} \]

E. What is the reactance of \( C_B \) at the frequency of oscillation?
   \[ X_{CB} = \boxed{6 \text{ ohms}} \]

Answers

A. \( C_T = 0.067 \mu F \)

B. Because \( Q \) is not known, use the formula that includes the resistance of the coil (see problem 16):
   \[ f_r = 26.75 \text{ kHz} \]
   If you use the calculated value of \( f_r \) to calculate \( Q \), as in problem 20 of Chapter 8, you find that \( Q = 4.2 \). Therefore, it is appropriate to use the formula that includes the resistance of the coil to calculate \( f_r \).

C. Using
   \[ Z_T = \frac{L}{rC}, \quad Z_T = 373 \text{ ohms.} \]

D. Using a voltage divider with the capacitor values,
   \[ V_f = V_{out} \frac{C_1}{(C_1 + C_2)} = \frac{V_{out}}{3}. \]

E. \( X_{CB} = \) about 6 ohms, which is a very good value (much less than the 8200 ohm value of \( R_2 \))

Figure 9-16 shows a Colpitts oscillator circuit that uses a different method for making feedback connections between the parallel LC circuit and the transistor.
**Question**

List the differences between this circuit and the one shown in Figure 9-15.

**Answer**

The feedback is connected to the base instead of the emitter, and the ground is connected to the center of the capacitive voltage divider. The capacitor $C_E$ has been added. (This connection provides a feedback signal to the base in the correct phase to provide positive feedback.)

In the circuit shown in Figure 9-16, capacitor $C_E$ should have a reactance of less than 160 ohms at the oscillation frequency. If the emitter resistor $R_E$ is smaller in value than 1.6 kΩ, then $C_E$ should have a reactance that is less than $R_E/10$ at the oscillation frequency.

**Question**

If you use an emitter resistor of 510 ohms in a 1 kHz oscillator, what value of capacitor should you use for $C_E$?

**Answer**

$$X_C = \frac{510}{10} = \frac{1}{2\pi f_C} = \frac{0.16}{10^3 \times C_E}$$

So, $C_E = 3.2 \mu F$. Thus, you should use a capacitor larger than 3 μF.
Figure 9-17 shows a Colpitts oscillator with the parallel LC circuit connected between the collector and the supply voltage. As with the circuits shown in Figures 9-15 and 9-16, this circuit provides a feedback signal to the transistor (in this case, the emitter) in the correct phase to provide positive feedback.

\[ C_1 \quad \text{and} \quad C_2 \]

The following table shows possible values you might use for \( C_1 \) and \( C_2 \) in the circuit shown in Figure 9-17.

<table>
<thead>
<tr>
<th>( C_1 )</th>
<th>( C_2 )</th>
<th>( C_T )</th>
<th>( f_r )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 ( \mu )F</td>
<td>0.1 ( \mu )F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 ( \mu )F</td>
<td>0.2 ( \mu )F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 ( \mu )F</td>
<td>0.3 ( \mu )F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 ( \mu )F</td>
<td>1 ( \mu )F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 ( \mu )F</td>
<td>1 ( \mu )F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Questions**

A. Calculate \( C_T \) and \( f_r \) for each row of the preceding table.
B. Does increasing $C_2$ while holding $C_1$ constant increase or decrease the resonance frequency?

C. What effect does increasing $C_1$ have on the resonance frequency?

D. What is the condition that results in the highest possible resonance frequency?

E. What would be the highest resonance frequency if $C_1$ is fixed at 0.01 $\mu$F and $C_2$ can vary from 0.005 $\mu$F to 0.5 $\mu$F?

### Answers

A. The values of $C_T$ and $f_r$ are shown in the following table.

<table>
<thead>
<tr>
<th>$C_1$</th>
<th>$C_2$</th>
<th>$C_T$</th>
<th>$f_r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 $\mu$F</td>
<td>0.1 $\mu$F</td>
<td>0.009 $\mu$F</td>
<td>4.19 kHz</td>
</tr>
<tr>
<td>0.01 $\mu$F</td>
<td>0.2 $\mu$F</td>
<td>0.0095 $\mu$F</td>
<td>4.08 kHz</td>
</tr>
<tr>
<td>0.01 $\mu$F</td>
<td>0.3 $\mu$F</td>
<td>0.0097 $\mu$F</td>
<td>4.04 kHz</td>
</tr>
<tr>
<td>0.1 $\mu$F</td>
<td>1 $\mu$F</td>
<td>0.09 $\mu$F</td>
<td>1.33 kHz</td>
</tr>
<tr>
<td>0.2 $\mu$F</td>
<td>1 $\mu$F</td>
<td>0.167 $\mu$F</td>
<td>0.97 kHz</td>
</tr>
</tbody>
</table>

B. Increasing $C_2$ decreases the resonance frequency, and, therefore, decreases the output frequency of the oscillator.

C. Increasing $C_1$ will also decrease the resonance frequency and the output frequency of the oscillator.

D. When $C_T$ is at its lowest possible value.

E. When $C_2$ is 0.005 $\mu$F, $C_T$ will be 0.0033 $\mu$F, which is its lowest possible value. Therefore, the frequency is at the highest possible value, or about 6.9 kHz. The lowest frequency occurs when $C_2$ is at its highest setting of 0.5 $\mu$F.
Optional Experiment

If you have an oscilloscope, you may want to build the oscillator shown in Figure 9-17 and see how closely your measurements of the frequency agree with those you have just calculated. If you are within 20 percent, then the answers are satisfactory. In some cases, the waveform may be distorted.

The Hartley Oscillator

Figure 9-18 shows a Hartley oscillator circuit. In this type of circuit, the feedback is taken from a tap on the coil.

![Hartley Oscillator Circuit Diagram]

Capacitor C_L stops the emitter DC voltage from being pulled down to 0 V through the coil. C_L should have a reactance of less than R_E/10, or less than 160 ohms at the oscillator frequency.

Questions

Work through the following calculations:

A. What is the resonance frequency?
   \[ f_r = \frac{1}{2\pi \sqrt{LC}} \]

B. What is the approximate impedance of the load?
   \[ Z = \frac{1}{2\pi f r C} \]
C. What missing information prevents you from calculating the fraction of the voltage drop across the coil that is fed back to the emitter?

**Answers**

A. 80 Hz (approximately)

B. 7.7 kΩ (approximately)

C. The number of turns in the coil and the position of the tap are not known.

Figure 9-19 shows a Hartley oscillator with the parallel LC circuit connected between the collector and the supply voltage. As with the circuit shown in Figure 9-18, this circuit provides a feedback signal to the emitter from a tap in the coil, in the correct phase to provide positive feedback.

For a Colpitts oscillator it is easy to choose the two capacitors to provide both the desired frequency and the desired amount of feedback. If the circuit does not oscillate, it is relatively simple to change the capacitors until it does oscillate, and then adjust the values slightly to get the desired frequency.

Because a Hartley oscillator uses a tapped coil, trying out different feedback voltages is not quite so easy. The feedback ratio cannot be altered, because it is impossible to make another tap or change the tap on the coil.
The Armstrong Oscillator

The Armstrong oscillator shown in Figure 9-20 is somewhat more difficult to design and build.

Here, the oscillations depend more on the extra winding on the coil than on any other factor.

Because of the large variety of transformers and coils available, it is almost impossible to give you a simple procedure for designing an Armstrong oscillator. Instead, the manufacturer specifies the number of turns required on the coils, which guarantees that the oscillator will work in its most common operation, at high radio frequencies.

Because of the practical difficulties, the Armstrong and its variations are not explored any further.

Practical Oscillator Design

This section briefly covers some practical problems with oscillators, and then presents a simple design procedure.

Before you proceed, review the important points of this chapter by answering the following questions.

Questions

A. What three elements must an oscillator have present to work?
B. What determines the frequency of an oscillator’s output signal?

C. What provides the feedback?

D. How many feedback methods for oscillators have we presented?

E. What do you need to start the oscillations once the circuit has been built?

Answers

A. An amplifier, a resonant LC circuit (or some other frequency determining components), and feedback.

B. The frequency of the output signal is the same as the resonance frequency.

C. A voltage divider on the resonant circuit.

D. Three — the Colpitts, Hartley, and the Armstrong.

E. Nothing — the oscillations should start spontaneously if the component values in the circuit are correct.

The main practical problem in building oscillators is selecting the coil. For mass production, a manufacturer can specify and purchase the exact coil required. But in a lab or workshop, where you are building only a single circuit, it is often difficult or impossible to find the exact inductor specified in a circuit design. What usually happens is that you use the most readily available coil, and design the rest of the circuit around it. This presents three possible problems:

- You may not know the exact value of the inductance.
- The inductance value may not be the best for the desired frequency range.
- The coil may or may not have tap points or extra windings, and this may cause a change in the circuit design. For example, if there are no taps, then you cannot build a Hartley oscillator.

Because Colpitts is the easiest oscillator to make work in practice and provides an easy way around some of the practical difficulties, let’s focus on that oscillator.

You can use almost any coil when building a Colpitts oscillator, provided it is suitable for the frequency range you want. For example, a coil from the tuner
section of a television set would not be suitable for a 1 kHz audio oscillator because its inductance value is outside the range best suited to a low frequency audio circuit.

**Simple Oscillator Design Procedure**

27 Following is a simple step-by-step procedure for the design of a Colpitts oscillator. The Colpitts will work over a wide frequency range. (A Hartley can be built from a very similar set of steps.)

By following this procedure, you can build an oscillator that works in the majority of cases. There is a procedure you can use that guarantees that the oscillator will work, but it is far more complex.

If you are not actually building the oscillator, use the assumed values provided here, and draw the circuits using your calculated values.

Follow these steps:

1. Choose the frequency of the oscillator output signal.
2. Choose a suitable coil. This step presents the greatest practical difficulty. Some values of coil are often not available, so you must use whatever is readily available. Fortunately, you can use a wide range of inductance values and still obtain the desired resonance frequency by adjusting the value of the capacitor.
3. If you know the value of the inductance, calculate the capacitor value using this formula:
   \[ f_r = \frac{1}{2\pi \sqrt{LC}} \]
   Use this value of capacitor for \( C_1 \) in the next steps.
4. If you don’t know the inductance value, choose any value of capacitance and call this \( C_1 \). This may produce a frequency considerably different from what you require. However, at this stage, the main thing is to get the circuit oscillating. You can adjust values later.
5. Choose a capacitor \( C_2 \) that is between 3 and 10 times the value of \( C_1 \). Figure 9-21 shows the two capacitors and the coil connected in a parallel circuit with the two capacitors acting as a voltage divider.

![Figure 9-21](image)
At this point, stop and make some assumptions. Suppose you need a frequency of 10 kHz and have a coil with a 16 mH inductance.

**Questions**

A. What approximate value of \( C_1 \) do you need?

B. What value of \( C_2 \) do you need?

**Answers**

A. \( C_1 = 0.016 \mu F \)

B. \( C_2 = 0.048 \mu F \) to 0.16 \( \mu F \)

Now, continue with the design procedure by following the next steps.

6. Design an amplifier with a common emitter gain of about 20. Choose a collector DC voltage that is about half the supply voltage. The main point to keep in mind here is that the collector resistor \( R_C \) should be about one-tenth the value of the impedance of the LC circuit at the resonance frequency. This is often a difficult choice to make, especially if you don’t know the coil value. Usually, you have to make an assumption, so \( R_C \) is an arbitrary choice.

7. Assemble the circuit shown in Figure 9-15.

8. Calculate the value of \( C_C \). Do this by making \( X_C \) 160 ohms at the desired frequency. This is another “rule of thumb” that happens to work, and you can justify it mathematically. Use the following formula:

\[
C_C = \frac{1}{2\pi f_r X_C}
\]

**Question**

Substitute the values given so far into the formula to calculate \( C_C \).

**Answer**

\[
C_C = \frac{1}{2\pi \times 10 \text{ kHz} \times 160 \Omega} = 0.1 \mu F
\]
320 Chapter 9 - Oscillators

29. Now, complete one last step.

9. Calculate the value of $C_B$. Again, choose a value so that $X_C$ is 160 ohms at the desired frequency.

**Question**

What is the value of $C_B$?

**Answer**

$C_B = 0.1 \mu F$

30. Continue the design procedure steps.

10. Apply power to the circuit and look at the output signal on an oscilloscope. If the output signal is oscillating, check the frequency. If the frequency varies significantly from the desired frequency, then change $C_1$ until you get the desired frequency. Change $C_2$ to keep the ratio of the capacitance values about the same as discussed in step 5. $C_2$ will affect the output level.

11. If the circuit does not oscillate, go through the steps outlined in the troubleshooting checklist that follows.

**Optional Experiment**

Once the oscillator is working, if you want to take it further, you can change the circuit to connect the feedback signal to the base instead of the emitter, as shown in Figure 9-16. To build this oscillator, you also need to calculate $C_E$. Assume that $X_C$ is 160 ohms at the desired frequency.

**Oscillator Troubleshooting Checklist**

If an oscillator does not work, most often the trouble is with the feedback connections. A little experimenting (as outlined in steps 2 to 6 of the following checklist) should produce the right results. This is especially true when you use an unknown coil that may have several taps or windings. However, you should try each of the following steps if you’re having trouble.

1. Ensure that $C_B$, $C_C$, and $C_E$ are all large enough to have a reactance value less than 160 ohms. Ensure that $C_E$ is less than one-tenth of $R_E$. 

2. Check the $C_1/C_2$ ratio. It should be between 3:1 and 10:1.

3. Swap out $C_1$ and $C_2$. They may be connected to the wrong end of the LC circuit.

4. Check that you made the feedback connection to and from the correct place.

5. Check both ends of the LC circuit to see that they are connected to the correct place.

6. Check the DC voltage level of the collector, base, and emitter.

7. Check the capacitor values of the LC circuit. If necessary, try some other values until the circuit oscillates.

8. If none of the previous actions produce oscillations, check to see if any of the components are defective. The coil may be opened or shorted. The capacitor may be shorted. The transistor may be dead, or its $\beta$ may be too low. Check the circuit wiring carefully.

In most cases, one or more of these steps produces oscillations.

When an oscillator is working it may still have one or two main faults, including the following:

- A distorted output waveform — This can happen when $C_B$, $C_C$, or $C_E$ are not low enough in value, or when an output amplitude is too high.

- Output level too low — When this happens, the sine wave is usually very "clean" and "pure." In a Colpitts oscillator, changing the ratio of $C_1$ and $C_2$ often helps raise the output level. If not, you can use another transistor as an amplifier after the oscillator as discussed in Chapter 8, problem 21.

31 Now, work through a design example. Design and build an oscillator with an output frequency of 25 kHz using a coil with a value of 4 mH, and address each of the steps in problems 27–30 as described in these questions.

**Questions**

1. The value of $f_r$ is given as 25 kHz.

2. $L$ is given as 4 mH.

3. Use the formula to find $C_1$.

   $$C_1 = \ldots$$

4. You do not need this step.

5. Choose $C_2$.

   $$C_2 = \ldots$$

6. The procedure to design amplifiers is shown in Chapter 8.

7. The circuit is shown in Figure 9-22.
8. Find $C_C$.
   
   \[ C_C = \quad \]  

   
   \[ C_B = \quad \]  

**Answers**

\[ C_1 = 0.01 \mu F \]
\[ C_2 = 0.1 \mu F \]
\[ C_C = 0.047 \mu F \text{ (use 0.1 } \mu F) \]
\[ C_B = 0.047 \mu F \text{ (use 0.1 } \mu F) \]

Steps 10–11 are the procedure you use to ensure that the oscillator works. If you build this circuit, go through steps 10–11. You don’t need to do them if you didn’t actually build the circuit.

Figure 9-22 shows the circuit designed in problem 31. Measurements of the output signal of this oscillator confirm a frequency very close to 25 kHz.

**Question**

Find the impedance of the LC circuit at resonance. Note that $r$ (the DC resistance of the inductor) is 12 ohms.
Oscillator Troubleshooting Checklist 323

Answer

\[ Z = \frac{L}{C \times r} = \frac{4 \times 10^{-3}}{0.01 \times 10^{-6} \times 12} = 33 \text{k\Omega \ (approximately)} \]

Note that this is about three times the value used for \( R_C \) instead of being 10 times the value of \( R_C \), as suggested in step 6 of problem 28.

33 If you wish, work through this second oscillator design example. Design an oscillator with an output frequency of 250 kHz using a coil with a value of 500 \( \mu \text{H} \).

Questions

1. \( f_r = 250 \text{ kHz} \)
2. \( L = 500 \mu \text{H} = 0.5 \text{ mH} \)
3. Find \( C_1 \).
   \[ C_1 = \quad \]
4. You do not need this step.
5. Find \( C_2 \).
   \[ C_2 = \quad \]
6. Use the same amplifier as in the last example.
7. The circuit is shown in Figure 9-23.
8. Find \( C_C \).
   \[ C_C = \quad \]
9. Find \( C_B \).
   \[ C_B = \quad \]

Answers

\( C_1 = 0.0008 \mu \text{F}; \) therefore, choose a standard value of 0.001 \( \mu \text{F} \)
\( C_2 = 0.0047 \mu \text{F}, \) which is a standard value
\( C_B = C_C = 0.004 \mu \text{F} \) (minimum)

34 The circuit you designed in problem 33 is shown in Figure 9-23.

Measurements of the output signal of this oscillator confirm a frequency close to 250 kHz.
Figure 9-23

Question

Find the impedance of the LC circuit at resonance. Note that r (the DC resistance of the inductor) is 20 ohms.

Answer

\[ Z = 30 \, \text{k}\Omega \]

This is about 3 times the value of \( R_C \) rather than 10 times the value of \( R_C \), as suggested in step 6 of problem 28.

Figure 9-24 shows several other oscillator circuits. Calculate the expected output frequency for each circuit and build as many as you want to. Check the measured oscillator output frequency against the calculated values for each circuit you build.

Questions

What is the output frequency for each circuit?

A. \( f = \) 

B. \( f = \) 

C. \( f = \) 

D. \( f = \)
Summary and Applications

In this chapter, we covered the following topics related to oscillators:

- The main elements that make up an oscillator.
- How to differentiate between positive and negative feedback.
- The type of feedback that causes a circuit to oscillate.
- Two methods of obtaining feedback in an oscillator circuit.
- How resonant LC circuits set the frequency of an oscillator.

**Answers**

A. 8.8 kHz
B. 10 kHz
C. 3 kHz
D. 1 kHz

**Figure 9-24**

- (a)
- (b)
- (c)
- (d)
You also practiced designing a simple oscillator circuit to solidify your understanding of its elements and operation.

**Self-Test**

These questions test your understanding of the concepts and equations presented in this chapter. Use a separate sheet of paper for your diagrams or calculations. Compare your answers with the answers provided following the test.

1. What are the three sections that are necessary in an oscillator?

2. What is the difference between positive and negative feedback?

3. What type of feedback is required in an oscillator?

4. What is the formula for the frequency of an oscillator?

5. Draw the circuit for a Colpitts oscillator.

6. Draw the circuit for a Hartley oscillator.

7. Draw the circuit for an Armstrong oscillator.

8. Problems 27–30 give a design procedure for oscillators. How well do the circuits in problem 35 fulfill the criteria for that procedure? In other words, check the values of $V_f$, $A_V$ (for a common emitter amplifier), $C_1/C_2$ ratio, $R_c/Z$ ratio, and the frequency.

   A.

   B.

   C.

   D.

9. For the circuit shown in Figure 9-23, calculate the values of $C_1$, $C_2$, $C_C$, and $C_B$ for an oscillator with an output frequency of 10 kHz using a 100 mH coil.

**Answers to Self-Test**

If your answers do not agree with those provided here, review the problems indicated in parentheses before you go on to the next chapter.
1. An amplifier, feedback, and a resonant load (problem 1)

2. Positive feedback is “in phase” with the input, and negative feedback is “out of phase” with the input. (problems 2–3)

3. Positive feedback (problem 3)

4. \[ f_r = \frac{1}{2\pi\sqrt{LC}} \] (problem 11)

5. See Figure 9-15. (problem 20)

6. See Figure 9-18. (problem 25)

7. See Figure 9-20. (problem 25)

8. A. \[ V_f = \frac{0.047}{0.147} \] (problems 27–30)

   \[ A_v \text{ cannot be calculated.} \]

   \[ C_1/C_2 = 0.047/0.1 = 0.47 \]

   \[ Z \text{ cannot be calculated because } r \text{ is unknown.} \]

   \[ f_r = 8.8 \text{ kHz (approximately)} \]

   B. \[ V_f = \frac{0.15}{0.62} \]

   \[ A_v = 2.2 \text{ (approximately)} \]

   \[ C_1/C_2 = 1/3 \text{ (approximately)} \]

   \[ Z \text{ cannot be calculated.} \]

   \[ f_r = 10 \text{ kHz (approximately)} \]

   C. \[ V_f = \frac{0.1}{0.2} \]

   \[ A_v \text{ cannot be calculated.} \]

   \[ C_1/C_2 = 1 \]

   \[ Z \text{ cannot be calculated.} \]

   \[ f_r = 3 \text{ kHz} \]

   D. \[ V_f = \frac{0.3}{1} \]

   \[ A_v \text{ cannot be calculated.} \]

   \[ C_1/C_2 = 0.3 \]

   \[ Z \text{ cannot be calculated.} \]

   \[ f_r = 1 \text{ kHz (approximately)} \]

9. \[ C_1 = 0.0033 \mu F; C_2 = 0.01 \mu F; C_B = C_C = 0.1 \mu F \] (problems 26–30)
Transformers are used to “transform” an AC voltage to a higher or lower level. When you charge up your cellphone, you are using a transformer to reduce the 120 volts supplied by the wall outlet to the 5 volts or so needed to charge your cellphone’s battery. In fact, most electrical devices that you plug into wall outlets use transformers to reduce power coming from an outlet to that required by the electrical components in the device.

You can also use transformers to increase voltage. For example, some of the equipment used to manufacture integrated circuits requires thousands of volts to operate. Transformers are used to increase the 240 volts supplied by the power company to the required voltage.

When you complete this chapter, you will be able to do the following:

- Recognize a transformer in a circuit.
- Explain and correctly apply the concepts of turns ratio and impedance matching.
- Recognize two types of transformer.
- Do simple calculations involving transformers.

**Transformer Basics**

1. Consider two coils placed very close to each other, as shown in Figure 10-1. If you apply an AC voltage to the first (or primary) coil, the alternating current flowing through the coil creates a fluctuating magnetic field that surrounds the coil. As the strength and polarity of this magnetic field changes, it induces
an alternating current and a corresponding AC voltage in the second (or secondary) coil. The AC signal induced in the secondary coil is at the same frequency as the AC signal applied to the primary coil.

![Coil 1 and Coil 2](image)

**Figure 10-1**

Both transformer coils are usually wound around a core made of a magnetic material such as iron or ferrite to increase the strength of the magnetic field.

**Questions**

A. When the two coils are wound around the same core, are they connected electrically?

B. What type of device consists of two wire coils wound around an iron or ferrite core?

C. If you apply an AC voltage to the terminals of the primary coil, what occurs in the secondary coil?

**Answers**

A. No.

B. A transformer.

C. An alternating current is induced in the secondary coil, which produces an AC voltage between the terminals of the secondary coil.

A transformer is only used with alternating currents. A fluctuating magnetic field (such as that generated by alternating current flowing through a primary coil) is required to induce current in a secondary coil. The stationary magnetic field generated by direct current flowing through a primary coil will not induce any current or voltage in a secondary coil.

When a sine wave signal is applied to a primary coil, you can observe a sine wave of the same frequency across the secondary coil, as shown in Figure 10-2.
Questions

A. What will be the difference in frequency between a signal applied to a primary coil and the signal induced in a secondary coil?

B. What will be the voltage difference across a secondary coil if 10 V DC is applied to the primary coil?

Answers

A. No difference. The frequencies will be the same.

B. Zero volts. When a DC voltage is applied to the primary coil, there is no voltage or current induced in the secondary coil. You can summarize this by saying that DC does not pass through a transformer.

You can compare the output waveform measured between the terminals of the secondary coil to the output waveform measured between the terminals of the primary coil. If the output goes positive when the input goes positive, as shown in Figure 10-3, then they are said to be in phase.

The dots on the coils in Figure 10-3 indicate the corresponding end of each coil. If one coil is reversed, then the output will be inverted from the input. The output is said to be out of phase with the input, and a dot is placed at the opposite end of the coil.
Question

In Figure 10-4, the output sine wave is out of phase with the input sine wave. Place a dot in the correct location in the secondary coil to show that it is out of phase.

![Figure 10-4](image)

Answer

The dot should be at the lower end of the right coil.

The transformer shown in the right side of Figure 10-5 has three terminals. The additional terminal, in the middle of the coil, is called a center tap.

![Figure 10-5](image)

Question

What is the difference between the two output waveforms shown for the transformer on the right side of Figure 10-5?

Answer

The two waveforms are 180 degrees out of phase. That is, the positive peak of the upper output occurs at the same time as the negative peak of the lower waveform.
In a transformer, the output voltage from the secondary coil is directly proportional to the number of turns of wire in the secondary coil. If you increase the number of turns of wire in the secondary coil, a larger output voltage is induced across the secondary coil. If you decrease the number of turns of wire in the secondary coil, a smaller output voltage is induced across the secondary coil.

**Question**

How does increasing the number of turns of wire in a secondary coil affect the output voltage across the secondary coil?

**Answer**

It increases the output voltage across the secondary coil.

The number of turns in the primary and secondary coils are shown in Figure 10-6 as $N_p$ and $N_s$.

![Figure 10-6](image)

**Question**

The ratio of the input to output voltage is the same as the ratio of the number of turns in the primary coil to the number of turns in the secondary coil. Write a simple formula to express this.

**Answer**

\[
\frac{V_{in}}{V_{out}} = \frac{N_p}{N_s}
\]

**NOTE** The ratio of primary turns to secondary turns is called the *turns ratio* (TR):

\[
TR = \frac{N_p}{N_s} = \frac{V_{in}}{V_{out}}
\]
Use the formula from problem 6 to answer the following question.

**Question**

Calculate the output voltage of a transformer with a 2 to 1 (2:1) turns ratio when you apply a 10 $V_{pp}$ sine wave to the primary coil.

**Answer**

\[
\frac{V_{in}}{V_{out}} = \frac{N_p}{N_s} = TR
\]

\[
V_{out} = V_{in} \frac{N_s}{N_p} = V_{in} \times \frac{1}{TR}
\]

\[
V_{out} = V_{in} \times \frac{1}{TR} = 10 \times \frac{1}{2} = 5 \ V_{pp}
\]

Use the input voltage and turns ratio for a transformer to answer the following questions.

**Questions**

Calculate $V_{out}$ in the following:

A. $V_{in} = 20 \ V_{pp}$, turns ratio = 5:1.
   $V_{out} = \underline{4 \ V_{pp}}$ (This is called a step down transformer.)

B. $V_{in} = 1 \ V_{pp}$, turns ratio = 1:10.
   $V_{out} = \underline{10 \ V_{pp}}$ (This is called a step up transformer.)

C. $V_{in} = 100 \ V_{rms}$. Find $V_{out}$ when the primary and secondary coil have an equal number of turns.
   $V_{out} = \underline{100 \ V_{rms}}$ (This is called an isolation transformer, which is used to separate or isolate the voltage source from the load electrically.)
Almost all electronic equipment that is operated from 120 V AC house current requires a transformer to convert the 120 V AC to a more suitable, lower voltage. Figure 10-7 shows a transformer that steps down 120 V AC to 28 V AC.

![Transformer Diagram](image)

**Figure 10-7**

**Question**

Calculate the turns ratio for this transformer.

**Answer**

\[ TR = \frac{N_p}{N_s} = \frac{120}{28} = 4.3:1 \]

Figure 10-8 shows an oscilloscope trace of the output waveform from the 28 V secondary coil.

![Oscilloscope Trace](image)

**Figure 10-8**

**Questions**

A. Is 28 V a peak-to-peak or an rms value?
B. What is the peak-to-peak value of the 28 V across the secondary coil?

\[ 2 \times 1.414 \times 28 = 79.184 \text{ V} \]

Like the 28 V transformer output value, the 120 V wall plug value is an rms measurement.

**Question**

What is the peak-to-peak value of the voltage from the wall plug?

**Answer**

Approximately 340 volts

The actual voltage measured across the secondary coil of a transformer depends upon where and how you make the measurement. Figure 10-9 illustrates different ways to measure voltage across a 20 V\text{pp} secondary coil that has a center tap.

![Figure 10-9](image)

If the center tap is grounded as shown in diagram (1) of Figure 10-9, then there is 10 V\text{pp} AC between each terminal and ground. You can see that the two output waveforms in diagram (1) are out of phase (180 degrees out of phase, in this case) by comparing the two sine waves shown next to the two terminals. If the bottom terminal is grounded as it is in diagram (2) of Figure 10-9 and...
the center tap is not used, then there is 20 \( V_{pp} \) between the top terminal and ground.

**Questions**

A. Assume a center-tapped secondary coil is rated at 28 \( V_{rms} \) referenced to the center tap. What is the rms voltage output when the center tap is grounded?

B. Assume the 28 \( V_{rms} \) is the total output voltage across the entire secondary winding. What will be the output voltage between each end of the coil and the center tap?

C. Assume the output voltage of a center-tapped secondary coil is 15 \( V_{rms} \) between each end of the coil and the center tap. What is the peak-to-peak output voltage when the center tap is not connected?

**Answers**

A. 28 \( V_{rms} \) between each end of the coil and the center tap

B. 14 \( V_{rms} \) (one half of the total \( V_{out} \))

C. When the center tap is not connected, the output is 30 \( V_{rms} \). Therefore, 
\[
V_{pp} = 2 \times 1.414 \times 30 = 84.84 \text{ volts}
\]

When the magnetic field induces an AC signal on the secondary coil, there is some loss of power. The percentage of power out of the transformer versus the input power is called the **efficiency** of the transformer. For the sake of this discussion, assume the transformer has an efficiency of 100 percent. Therefore, the output power of the secondary coil equals the power into the primary coil.

\[
\text{Power in} = \text{Power out}, \text{ or } P_{in} = P_{out}
\]

However, \( P = VI \). Therefore, the following is true:

\[
V_{in}I_{in} = V_{out}I_{out}
\]

You can rearrange this to come up with the following formula:

\[
\frac{I_{out}}{I_{in}} = \frac{V_{in}}{V_{out}} = TR
\]
338  Chapter 10  ■ The Transformer

Questions

A. What would be the input current for a transformer if the input power was 12 watts at a voltage of 120 V\text{rms}?

B. What would be the transformer’s output voltage if the turns ratio was 5:1?

C. What would be the output current?

D. What would be the output power?

Answers

NOTE In AC power calculations, you must use the rms values of current and voltage.

A. \( I_{in} = \frac{P_{in}}{V_{in}} = \frac{12}{120} = 0.1 \text{ A}_{\text{rms}} \)

B. \( V_{out} = \frac{V_{in}}{TR} = \frac{120}{5} = 24 \text{ V}_{\text{rms}} \)

C. \( I_{out} = I_{in} (TR) = 0.1 \times 5 = 0.5 \text{ A}_{\text{rms}} \)

D. \( P_{out} = V_{in}I_{out} = 24 \times 0.5 = 12 \text{ watts (same as the power in)} \)

Transformers in Communications Circuits

In communications circuits, an input signal is often received via a very long interconnecting wire, usually called a line, which normally has an impedance of 600 ohms. A typical example is a telephone line between two cities.
Question

Communications equipment works best when connected to a load that has the same impedance as the output of the equipment. What output impedance should communications equipment have?

Answer

600 ohms output impedance, to be connected to a 600 ohms line

Because most electronic equipment does not have a 600 ohm output impedance, a transformer is often used to connect such equipment to a line. Often, the transformer will be built into the equipment for convenience. The transformer is used to “match” the equipment to the line, as shown in Figure 10-10.

![Figure 10-10](image)

To work correctly, the output of the transformer secondary coil should have a 600 ohm impedance to match the line. The output impedance of the transformer (measured at the secondary winding) is governed by two things. One of these is the output impedance of the equipment.

Question

What would you expect the other governing factor to be?

Answer

The turns ratio of the transformer. (The DC resistance of each coil has no effect, and you can ignore it.)
Figure 10-11 shows a signal generator with an output impedance of $Z_G$ connected to the primary coil of a transformer. A load impedance of $Z_L$ is connected to the secondary coil.

You know that $P_{in} = P_{out}$ and that $P = V^2/Z$. Therefore, you can write an equation equating the power of the generator to the power of the load in terms of $V$ and $Z$, as shown here:

$$\frac{V_G^2}{Z_G} = \frac{V_L^2}{Z_L}$$

You can rearrange this equation to give the ratio of the voltages, as shown here:

$$Z_G/Z_L = \left( \frac{V_G}{V_L} \right)^2$$

And since $V_G = V_{in}$ and $V_L = V_{out}$ and $V_{in}/V_{out} = N_p/N_s$, the following is true:

$$\frac{Z_G}{Z_L} = \left( \frac{V_{in}}{V_{out}} \right)^2 = \left( \frac{N_p}{N_s} \right)^2 = (TR)^2$$

Therefore, the ratio of the input impedance to the output impedance of a transformer is equal to the square of the turns ratio. As you will see in question A, you can determine the turns ratio for a transformer that will match impedances between a generator and a load. In this way, the generator "sees" an impedance equal to its own impedance, and the load also "sees" an impedance equal to its own impedance.

For the following problem, a generator has an output impedance of 10 kΩ and it produces a 10 Vpp (3.53 Vrms) signal. It will be connected to a 600 ohm line.

**Questions**

A. To properly match the generator to the line, what turns ratio is required?
B. Find the output voltage across the load.

C. Find the load current and power.

**Answers**

A. \[ TR = \sqrt{\frac{Z_G}{Z_L}} = \sqrt{\frac{10,000 \, \Omega}{600 \, \Omega}} = \frac{4.08}{1} \text{ or } 4.08:1 \]

B. \[ V_L = \frac{V_G}{TR} = \frac{10}{4.08} = 2.45 \, V_{pp}, \text{ which is } 0.866 \, V_{rms} \]

C. \[ P_{in} = \frac{V_G^2}{Z_G} = \frac{(3.53)^2}{10,000} = 1.25 \, mW \]

**NOTE** For the power calculation, you must use the RMS value of the voltage.

\[ I_{in} = \frac{P_{in}}{V_{in}} = \frac{1.25 \, mW}{3.53 \, V_{rms}} = 0.354 \, mA_{rms}, \text{ which is } 1 \, mA_{pp} \]

\[ I_L = I_{in} (TR) = 0.354 \times 4.08 = 1.445 \, mA_{rms}, \text{ which is } 4.08 \, mA_{pp} \]

\[ P_L = \frac{V_L^2}{Z_L} = \frac{(0.866)^2}{600} = 1.25 \, mW; \]

which is the same as the input power. This circuit is shown in Figure 10-12.

![Figure 10-12](image-url)
NOTE The generator now sees $10 \, \text{k}\Omega$ when it looks toward the load, rather than the actual 600 ohm load. By the same token, the load now sees 600 ohms when it looks toward the source. This condition allows the optimum transfer of power to take place between the source and the load. In practice, however, the optimum condition as calculated here rarely exists. Because it may be impossible to obtain a transformer with a turns ratio of $4.08:1$, you would have to select the closest available value, which might be a turns ratio of $4:1$. The difference in the turns ratio affects the conditions at the load side, but only slightly.

In this problem, you use a transformer to match a generator to a load.

**Questions**

A. What turns ratio is required to match a generator that has a $2 \, \text{k}\Omega$ output to a 600 ohm line?

B. If the generator produces $1 \, \text{V}_{pp}$, what is the voltage across the load?

**Answers**

A. $TR = 1.83$

B. $V_L = 0.55 \, \text{V}_{pp}$

In this problem you use a transformer to match a generator to a $2 \, \text{k}\Omega$ load.

**Questions**

A. What turns ratio is required to match a $2 \, \text{k}\Omega$ load with a source that has an output impedance of $5 \, \text{k}\Omega$?

B. If the load requires a power of $20 \, \text{mW}$, what should the source be? (First, find the voltage across the load.)

C. What are the primary and secondary currents and the power supplied by the source to the primary side of the transformer?
**Answers**

A. \( TR = 1.58 \)

B. \[ V_L = \sqrt{P_L \times Z_L} = \sqrt{20 \text{ mW} \times 2 \text{ k}\Omega} = 6.32 \text{ V}_{\text{rms}}; \text{ and} \]
   \[ V_G = V_L \times TR = 6.32 \text{ V}_{\text{rms}} \times 1.58 = 10 \text{ V}_{\text{rms}} \]

C. \( I_L = 3.16 \text{ mA}_{\text{rms}}, I_p = 2 \text{ mA}_{\text{rms}}, P_{\text{in}} = 20 \text{ mW} \)

**Summary and Applications**

In this chapter, you learned about the following topics related to transformers:

- The principles that allow an AC signal to be induced in a secondary coil
- How the AC voltage across the secondary coil can be stepped up or down depending upon the turns ratio of the transformer
- The use of a center tap to produce various voltages from a transformer
- The use of transformers to match impedances between a generator and a load
- That transformers can cause the output signal to be inverted (out of phase) from the input signal

**Self-Test**

These questions test your understanding of the material in this chapter. Use a separate sheet of paper for your diagrams or calculations. Compare your answers with the answers provided following the test.

1. How is a transformer constructed?

2. What type of signal is used as an input to a transformer?

3. If a sine wave is fed into a transformer shown in Figure 10-13, what does the output waveform look like?
4. What is meant by the term *turns ratio*?

5. If $V_{in} = 1 \, V_{pp}$ and $TR = 2$, what is the output voltage?

$$V_{out}$$

6. $V_{in} = 10 \, V_{pp}$ and $V_{out} = 7 \, V_{pp}$, what is the turns ratio?

$$TR =$$

7. In the center-tapped secondary winding shown in Figure 10-14, the voltage between points A and B may be expressed as $V_{A-B} = 28 \, V_{pp}$. What is the voltage between C and A?

8. In the center-tapped secondary winding shown in Figure 10-14, the voltage between points B and C is $V_{B-C} = 5 \, V_{rms}$. What is the peak-to-peak voltage between A and B?

9. If $I_{in} = 0.5 \, A_{rms}$ and $I_{out} = 2.0 \, A_{rms}$, what is the turns ratio?
10. Is the transformer in problem 9 a step up or a step down transformer?

11. If $Z_L = 600 \, \text{ohms}$ and $Z_G = 6 \, \text{k}\Omega$, find the turns ratio.
   \[ TR = \quad \]

12. If $Z_L = 1 \, \text{k}\Omega$ and the turns ratio is 10:1, what is the generator impedance?
   \[ Z_G = \quad \]

**Answers to Self-Test**

If your answers do not agree with those given here, review the frames indicated in parentheses before you go on to the next chapter.

1. Two coils of wire wound around a magnetic core (such as iron or ferrite) (problem 1)
2. An AC voltage — DC does not work. (problem 2)
3. An inverted sine wave (problem 3)
4. The ratio of the turns in the primary winding to the number of turns in the secondary coil (problem 6)
5. $V_{out} = 0.5 \, \text{V}$ (problem 7)
6. $TR = 1.43:1$ (problem 7)
7. $V_{C-A} = 14 \, V_{pp}$ (problem 12)
8. $V_{A-B} = 14.14 \, V_{pp}$ (problem 12)
9. $TR = 4:1$ (problem 13)
10. It is a step down transformer. The voltage is lower (stepped down) in the secondary coil than in the primary coil if the current in the secondary coil is higher than the current in the primary coil. This maintains the same power on either side of the transformer. (problem 13)
11. $TR = 3.2:1$ (problem 16)
12. $Z_G = 100 \, \text{k}\Omega$ (problem 16)
A power supply is incorporated into many electronic devices. Power supplies take the 120 V AC from a wall plug and convert it to a DC voltage, providing power for all types of electronic circuits.

Power supply circuits are very simple in principle, and those shown in this chapter have been around for many years. Because power supplies incorporate many of the features covered in this book, they make an excellent conclusion to your study of basic electronics.

Diodes are a major component in power supplies. Learning how AC signals are affected by diodes is fundamental to your understanding of how power supplies work. Therefore, this chapter begins with a brief discussion of diodes in AC circuits.

Note that throughout this chapter, diagrams show how AC signals are affected by diodes and other components in power supply circuits. If you have an oscilloscope, you can breadboard the circuits and observe these waveforms yourself.

When you complete this chapter, you will be able to do the following:

- Describe the function of diodes in AC circuits.
- Identify at least two ways to rectify an AC signal.
- Draw the output waveforms from rectifier and smoothing circuits.
- Calculate the output voltage from a power supply circuit.
- Determine the appropriate component values for a power supply circuit.
Diodes in AC Circuits Produce Pulsating DC

You can use diodes for several purposes in AC circuits, where their characteristic of conducting in only one direction is useful.

Questions

Assume that you apply +20 V DC at point A of the circuit shown in Figure 11-1.

A. What is the output voltage at point B?

B. Suppose that you now apply +10 V DC at point B. What is the voltage at point A?

Answers

A. 20 V DC (Ignore, for now, the voltage drop of 0.7 V across the diode.)

B. 0 V (The diode is reverse biased.)

Figure 11-2 shows the circuit in Figure 11-1 with a 20 V<sub>pp</sub> AC input signal centered at +20 V DC.
Questions
A. What are the positive and negative peak voltages of the input signal?

B. What is the output waveform of this circuit?

Answers
A. Positive peak voltage is $20 \, V + 10 \, V = 30 \, V$.
   Negative peak voltage is $20 \, V - 10 \, V = 10 \, V$.
B. The diode is always forward biased, so it always conducts. Thus, the
   output waveform is exactly the same as the input waveform.

Figure 11-3 shows a circuit with 20 Vpp AC input signal centered at 0 V DC.

Questions
A. What are the positive and negative peak voltages of the input signal?

B. Draw the output waveform on the blank graph provided in Figure 11-4. Remember that only the positive portion of the input waveform passes through the diode.
Answers

A. Positive peak voltage is $+10\, \text{V}$. Negative peak voltage is $-10\, \text{V}$.

B. See Figure 11-5.

![Figure 11-5](image)

When the input is negative, the diode in the circuit shown in Figure 11-3 is reverse biased. Therefore, the output voltage remains at $0\, \text{V}$.

Question

Figure 11-6 shows the input waveform for the circuit shown in Figure 11-3. On a separate sheet of paper, draw the output waveform.

![Figure 11-6](image)

Answer

See Figure 11-7.

![Figure 11-7](image)
Figure 11-7 shows the output waveform, of the circuit shown in Figure 11-3, for one complete cycle of the input waveform.

**Question**

Now, draw the output waveform for three complete cycles of the input waveform shown in Figure 11-6. Use a separate sheet of paper for your drawing.

**Answer**

See Figure 11-8.

![Figure 11-8](image)

Figure 11-8

6. When the diode is connected in the opposite direction, it is forward biased and, therefore, conducts current when the input signal is negative. In this case, the diode is reverse biased when the input signal is positive. Therefore, the output waveform is inverted from the output waveform shown in Figure 11-8.

**Question**

On a separate sheet of paper, draw the output waveform for three input cycles, assuming that the diode is connected in the opposite direction from the diode shown in Figure 11-3.

**Answer**

See Figure 11-9.

![Figure 11-9](image)

Figure 11-9
Figure 11-10 shows a circuit with a 20 V<sub>pp</sub> AC input signal centered at –20 V DC.

![Figure 11-10](image)

**Questions**

A. When is the diode forward biased?

B. What is the output voltage?

**Answers**

A. Never, because the voltage that results from adding the AC and DC signals ranges from –10 V to –30 V. Therefore, the diode is always reverse biased.

B. A constant 0 V

As you have seen, a diode passes either the positive or negative portion of an AC voltage waveform, depending on how you connect it in a circuit. Therefore, the AC input signal is converted to a pulsed DC output signal, a process called rectification. A circuit that converts either the positive or negative portion of an AC voltage waveform to a pulsed DC output signal is called a half-wave rectifier.

**Question**

Refer to the output waveforms shown in Figures 11-8 and 11-9. Do these waveforms represent positive DC voltage pulses or negative DC voltage pulses?
Diodes in AC Circuits Produce Pulsating DC 353

**Answer**

The waveform in Figure 11-8 represents positive pulses of DC voltage. The waveform in Figure 11-9 represents negative pulses of DC voltage.

9. The circuit shown in Figure 11-11 shows a diode connected to the secondary coil of a transformer.

![Figure 11-11](image)

**Questions**

A. How does the diode affect the AC signal?

B. Draw the waveform of the voltage across the load for the circuit shown in Figure 11-11 if the secondary coil of the transformer has a $30\ V_{pp}$ AC output signal centered at 0 V DC. Use a separate sheet of paper for your drawing.

**Answers**

A. The AC signal is rectified.

B. See Figure 11-12. This type of circuit (called a *half-wave rectifier*) produces in an output waveform containing either the positive or negative portion of the input waveform.

![Figure 11-12](image)

10. Figure 11-13 shows the waveforms at each end of a center-tap transformer secondary coil. Diode $D_1$ rectifies the waveform shown at point A and diode $D_2$ rectifies the waveform shown at point B.
Questions
A. Which diode conducts during the first half of the cycle?
B. Which diode conducts during the second half of the cycle?
C. Draw the input waveforms (points A and B), and underneath draw each output waveform (points C and D). Use a separate sheet of paper for your drawing.

Answers
A. During the first half of the cycle, $D_1$ is forward biased and conducts current. $D_2$ is reverse biased and does not conduct current.
B. During the second half of the cycle, $D_2$ is forward biased and conducts current. $D_1$ is reverse biased and does not conduct current.
C. See Figure 11-14.
Figure 11-15 shows a circuit in which diodes connected to the ends of a center-tap transformer are connected to ground through a single resistor. The output voltage waveforms from both diodes are therefore applied across one load resistor. This type of circuit is called a full-wave rectifier.

**Question**

On a separate sheet of paper, draw the waveform representing the voltage at point E in the circuit shown in Figure 11-15. (This waveform is a combination of the waveforms at points C and D shown in Figure 11-14.)

**Answer**

See Figure 11-16.

Full-wave rectification of AC allows a much “smoother” conversion of AC to DC than does half-wave rectification.
Figure 11-17 shows a full-wave rectifier circuit that uses a transformer with a two terminal secondary coil, rather than a center-tapped secondary coil.

![Figure 11-17](image)

**Question**

How does this circuit differ from the circuit shown in Figure 11-15?

**Answer**

This circuit has no center tap on the secondary coil, and it uses four diodes.

![Figure 11-18](image)

Figure 11-18 shows the direction of current flow when the voltage at point A is positive.
Figure 11-19 shows the direction of current flow when the voltage at point B is positive.

Notice that the direction of current through the load resistor is the same in both cases.

**Question**

A. Through how many diodes does the current travel in each conduction path?

B. Draw the voltage waveform at point C. Use a separate sheet of paper for your drawing.

**Answer**

A. Two diodes in each case

B. See Figure 11-20.
Chapter 11  Power Supply Circuits

What this chapter has explored to this point is how AC is turned into pulsating DC. In fact, rectified AC is often called *pulsating DC*. The next step in your understanding of power supplies is to learn how you turn pulsating DC into level DC.

**Level DC (Smoothing Pulsating DC)**

A basic power supply circuit can be divided into four sections, as shown in Figure 11-21.

**Questions**

A. If you use a center-tap transformer in a power supply, how many diodes would you need to produce a full-wave rectified output?

B. Will the power supply circuit shown in Figure 11-21 result in full- or half-wave rectification?

C. What type of output will the rectifier section of the power supply circuit shown in Figure 11-21 produce?

**Answers**

A. Two

B. Half-wave

C. Pulsating DC
The function of the smoothing section of a power supply circuit is to take the pulsating DC (PDC) and convert it to a “pure” DC with as little AC “ripple” as possible. The smoothed DC voltage, shown in the illustration on the right in Figure 11-22, is then applied to the load.

![Diagram of pulsating DC and DC with AC “ripple”](image)

**Figure 11-22**

The load (which is “driven” by the power supply) can be a simple lamp or a complex electronic circuit. Whatever load you use, it will require a certain voltage across its terminals and will draw a current. Therefore the load will have a resistance.

Usually the voltage and current required by the load (and, hence, its resistance) are known, and you must design the power supply to provide that voltage and current.

To simplify the circuit diagrams, you can treat the load as a simple resistor.

**Questions**

A. What does the smoothing section of a power supply do?

B. What is connected to a power supply, and what can you treat it like?

**Answers**

A. The smoothing section converts the pulsating DC to a “pure” DC.

B. A load such as a lamp or an electronic circuit is connected to a power supply. In most cases you can treat the load as you do a resistor.
Figure 11-23 shows a power supply circuit with a resistor as the load.

![Power Supply Circuit Diagram]

**Questions**

Look at the circuit shown in Figure 11-23 and answer these questions.

A. What type of secondary coil is used?

B. What type of rectifier is used?

C. What components make up the smoothing section?

D. What output would you expect from the rectifier section?

**Answers**

A. A secondary coil with no center tap
B. A single diode half-wave rectifier
C. A resistor and two capacitors (R₁, C₁, and C₂)
D. Half-wave pulsating DC

Figure 11-24 shows the output waveform from the rectifier portion of the power supply circuit shown in Figure 11-23.
This waveform is the input to the smoothing section of the power supply circuit. Use one of the DC pulses (shown in Figure 11-25) to analyze the effect of the smoothing section on the waveform.

Figure 11-25

As the voltage level of the DC pulse rises to its peak, the capacitor C₁ is charged to the peak voltage of the DC pulse.

When the input DC pulse drops from its peak voltage back to 0 volts, the electrons stored on capacitor C₁ discharge through the circuit. This maintains the voltage across the load resistor at close to its peak value, as shown in Figure 11-26. Note that the DC pulse to the right of the diode stays at the peak voltage, even though Vᵢₙ drops to zero.

Figure 11-26

**Question**

What discharge path is available for the capacitor C₁?

**Answer**

The diode is not conducting, so the capacitor cannot discharge through the diode. The only possible discharge path is through R₁ and the load Rₐ.

If no further pulses pass through the diode, the voltage level drops as the capacitor discharges, resulting in the waveform shown in Figure 11-27.
However, if another pulse passes through the diode before the capacitor is discharged, the resulting waveform looks like that shown in Figure 11-28.

The capacitor only discharges briefly before the second pulse recharges it to peak value. Therefore, the voltage applied to the load resistor only drops a small amount.

Applying further pulses can produce this same recharging effect again and again. Figure 11-29 shows the resulting waveform.

The waveform in Figure 11-29 has a DC level with an AC ripple, which varies between $V_p$ and $V_x$. If you choose values of $C_1$, $R_1$, and $R_L$ that produce a discharge time constant for $C_1$ equal to about 10 times the duration of an input pulse, $V_x$ will be about 80 percent of $V_p$.

If the discharge time you select is greater than 10 times the duration of an input pulse, the smoothing effect minimizes the AC ripple. A time constant of 10 times the pulse duration results in practical design values that are used throughout this chapter.

**NOTE** The smoothing section of a power supply circuit is sometimes referred to as a *low pass filter*. Though such a circuit can function as a low pass filter, in the case of a power supply circuit converting AC to DC, it is the release of electrons by the capacitor that is primarily responsible for leveling out the pulsating DC. For that reason, this discussion uses the term *smoothing section*. 
Question

Estimate the average DC output level of the waveform shown in Figure 11-29.

Answer

About 90 percent of \( V_p \)

The output from the secondary coil of the circuit shown in Figure 11-30 is a 28 V\(_{\text{rms}}\), 60 Hz sine wave. For this circuit, you need 10 V DC across the 100 ohm load resistor.

![Figure 11-30](diagram.png)

Question

What is the peak voltage out of the rectifier?

Answer

The transformer secondary coil delivers 28 V\(_{\text{rms}}\), so

\[
V_p = \sqrt{2} \times V_{\text{rms}} = 1.414 \times 28\,\text{V}_{\text{rms}} = 39.59\,\text{V}
\]

or about 40 V.

Figure 11-31 shows the waveform after the diode has rectified the sine wave for the halfway rectifier circuit shown in Figure 11-30.
Question
Calculate the duration of one pulse.

Answer
60 Hz represents 60 cycles (that is, wavelengths) in 1 second. Therefore, one wavelength lasts for 1/60 second.

\[
\frac{1}{60} \text{ second} = \frac{1000}{60} \text{ milliseconds} = 16.67 \text{ ms}
\]
Therefore, the duration of a pulse, which is half a wavelength, is 8.33 ms.

The average DC voltage at point B in the circuit shown in Figure 11-30 is about 90 percent of the peak value of the sine wave from the secondary coil, or \(V_B = 0.9 \times 40 \text{ V} = 36 \text{ V}\). \(R_1\) and \(R_L\) act as a voltage divider to reduce the 36 V DC level to the required 10 V DC at the output.

Question
Using the voltage divider formula, calculate the value of \(R_1\) that will result in 10 V DC across the 100 ohm load resistor.

Answer
\[
V_{\text{out}} = \frac{V_{\text{in}} R_L}{(R_1 + R_L)}
\]
\[
10 = \frac{36 \times 100}{(R_1 + 100)}
\]
Therefore, \(R_1 = 260\) ohms
Figure 11-32 shows the half-wave rectifier circuit with the 260 ohm value you calculated for $R_1$.

Now, choose a value for $C_1$ that produces a discharge time through the two resistors equal to 10 times the input wave duration.

**Questions**

A. How long should the discharge time constant be for the circuit in Figure 11-32? Refer to problems 18 and 20.

B. Given the time constant, calculate the value of $C_1$.

**Answers**

A. The time constant should be ten times the pulse duration (8.33 ms), so:
   \[
   \tau = 10 \times 8.33 \text{ ms} = 83.3 \text{ ms} \text{ or } 0.083 \text{ seconds}
   \]

B. \[
\tau = R \times C = (R_1 + R_L) \times C_1 = 360 \times C_1
\]
   Therefore, \[0.0833 = 360 \times C_1 \text{ or } C_1 = 230 \mu F\]

Figure 11-33 shows voltage waveforms at various points in the half-wave rectifier circuit.

**Questions**

A. What happens to the DC output voltage between points B and C in this circuit?

B. What happens to the waveform between points A and C in the circuit?
Answers

A. The voltage has been reduced from 36 V to 10 V.

B. The waveform has changed from pulsating DC to a 10 V DC level with an AC ripple.

In most cases, the level of the AC ripple is still too high, and further smoothing is required. Figure 11-34 shows the portion of the half-wave rectifier circuit that forms a voltage divider using $R_1$ and the parallel combination of $R_L$ and $C_2$. This voltage divider reduces the AC ripple and the DC voltage level.
Choose a value for $C_2$ that causes the capacitor’s reactance ($X_{C2}$) to be equal to or less than one tenth of the resistance of the load resistor. $C_2$, $R_L$, and $R_2$ form an AC voltage divider. As discussed in problem 26 of Chapter 6, choosing such a value for $C_2$ simplifies the calculations for an AC voltage divider circuit containing a parallel resistor and capacitor.

**Questions**

A. What should the value of $X_{C2}$ be?

B. What is the formula for the reactance of a capacitor?

C. What is the frequency of the AC ripple?

D. Calculate the value of the capacitor $C_2$.

**Answers**

A. $X_{C2} = R_L/10 = 100/10 = 10 \, \Omega$ or less

B. $X_C = \frac{1}{2\pi f C}$

C. 60 Hz. This is identical to the frequency of the sine wave output from the transformer’s secondary coil.

D. Solving the reactance formula for $C$ results in the following:

$$C_2 = \frac{1}{2\pi f X_C} = \frac{1}{2 \times \pi \times 60 \, \text{Hz} \times 10 \, \Omega} = 265 \, \mu\text{F}$$

Figure 11-35 shows the half-wave rectifier circuit with all capacitor and resistor values.
Because $X_{C2}$ is one tenth of $R_L$, you can ignore $R_L$ in AC voltage divider calculations. The resulting AC voltage divider circuit is shown in Figure 11-36.

![Figure 11-36](image)

**Questions**

A. What is the peak-to-peak voltage at the input to the AC voltage divider?

B. Find the AC ripple output across $R_L$ using the AC voltage divider formula discussed in problem 26 of Chapter 6.

**Answers**

A. $V_{pp} = V_p - V_x = 40\,V - 32\,V = 8\,V_{pp}$

B. $AC\,V_{out} = (AC\,V_{in}) \times \frac{X_{C2}}{\sqrt{X_{C2}^2 + R_1^2}}$

$AC\,V_{out} = 8 \times \frac{10}{\sqrt{(10^2 + 260^2)}} = 0.31\,V_{pp}$

**NOTE** This result means that the addition of $C_2$ lowers the AC ripple shown by curve C of Figure 11-33, with peak values of 11.11 and 8.89, to values of 10.155 and 9.845 V. This represents a lower ripple at the output. Hence, $C_2$ aids the smoothing of the 10 V DC at the output.

26 You can apply the calculations you performed for a half-wave rectifier circuit in the last few problems to a full-wave rectifier circuit. In the next few problems, you calculate the values of $R_1$, $C_1$, and $C_2$ required to provide
10 volts DC across a 100 ohm load for a full-wave rectifier circuit with a
28 V_{rms} sine wave supplied by the secondary coil of a transformer.

Figure 11-37 shows the output waveform from the rectifier section of the
circuit.

![Figure 11-37]

Figure 11-37 shows the waveform that results from using a smoothing
capacitor

![Figure 11-38]

If C₁’s discharge time constant is ten times the period of the waveform, V_x
is about 90 percent of V_p. The average DC level is about 95 percent of V_p.

Questions

A. What is the average DC level for the half-wave rectifier at point B in
   Figure 11-33?

B. What is the average DC level for the waveform in Figure 11-38 given that
   V_p = 40 V?

C. Why does a full-wave rectifier have a higher average DC level than a
   half-wave rectifier?
Answers

A. 36 V, which was 90 percent of $V_p$
B. 38 V, which is 95 percent of $V_p$
C. The slightly higher values occur because the capacitor does not discharge as far with full-wave rectification, and, as a result, there is slightly less AC ripple. Therefore, $V_x$ is higher and the average DC level is higher.

27 You can use the method for calculating the value of $R_1$ for a half-wave rectifier (see problem 21) to calculate the value of $R_1$ for a full-wave rectifier.

Question

Calculate the value of $R_1$ when $R_L = 100 \Omega$, $V_{in} = 38$ V, and the required voltage across $R_L$ is 10 V.

Answer

$$V_{out} = 10V = \frac{V_{in}R_L}{(R_1 + R_L)} = \frac{38 \times 100}{(R_1 + 100)}$$

Therefore, $R_1 = 280$ ohms.

28 You can also use the method for calculating the value of $C_1$ for a half-wave rectifier (see problem 22) to calculate the value of $C_1$ for a full-wave rectifier.

Question

Calculate the value of $C_1$.

Answer

With a time constant of $\tau = 83.3$ ms and a discharge resistance of $R_1 + R_L = 380$ ohms, $C_1 = 220 \mu$F.
29 You can use the voltage divider equation to find the amount of AC ripple across the load resistor for a full-wave rectifier with \( R_1 = 280 \, \Omega \) and \( R_L = 100 \, \Omega \). For \( V_p = 40 \, V \), the calculation results in 10.52 V. For \( V_x = 36 \, V \), the calculation results in 9.47 V. Therefore, the voltage levels at the load resistor vary between 10.52 V and 9.47 V, with an average DC level of 10 V. You can reduce the AC ripple by adding a second capacitor in parallel with the load resistor.

**Questions**

Use the method for calculating the value of \( C_2 \) for the half-wave rectifier in problem 24.

A. Calculate the reactance of the second capacitor (\( C_2 \)).

B. Calculate the value of \( C_2 \). (Note that the frequency of the AC ripple for the full-wave rectifier is 120 Hz.)

**Answers**

A. The reactance should be one tenth (or less) of the load resistance. Therefore, it should be 10 ohms or less.

\[
C_2 = \frac{1}{2\pi f X_C} = \frac{1}{2 \times \pi \times 120 \, \text{Hz} \times 10 \, \Omega} = 135 \, \mu\text{F}
\]

B. 

\[
C_2 = \frac{1}{\omega C_2} = \frac{1}{2 \times \pi \times 120 \, \text{Hz} \times 10 \, \Omega} = 135 \, \mu\text{F}
\]

30 The AC ripple at the first smoothing capacitor ranges from 36 V to 40 V. The AC ripple at the load ranges from 9.47 V to 10.52 V when there is only one capacitor in the circuit.

**Question**

Calculate the upper and lower values of the AC ripple at the output if you use a second capacitor with a value of 135 \( \mu\text{F} \) in parallel with the load resistor. You can use the same formulas as those for the half-wave rectifier in problem 25. Note that \( X_{C2} \) is 10 \( \Omega \) from problem 29; \( R_1 = 280 \) from problem 27; and AC \( V_{in} = V_p - V_x = (40 \, V - 36 \, V) = 4 \, V_{pp} \).
Answer

\[ AC \text{V}_{\text{out}} = (AC \text{V}_{\text{in}}) \times \frac{X_{C2}}{\sqrt{R_{12}^2 + X_{C2}^2}} = 0.143 \text{ V}_{\text{pp}} \]

The result of approximately 0.14 V_{pp} means that the output will now vary from 10.07 to 9.93 V. This shows that the second capacitor lowers the ripple significantly. The AC ripple is less than half of the ripple shown for the half-wave rectifier in problem 25. In other words, a full-wave rectifier produces a smoother DC output than a half-wave rectifier.

Figure 11-39 shows a full-wave rectifier circuit with an output voltage of 5 V across a 50 Ω load resistor. Use the following steps to calculate the values of the other components.

Questions

A. What are \( V_p \), \( V_x \), and the DC level at the first capacitor?

B. Calculate the value of \( R_1 \) required to make the DC level at the output 5 V.

C. Calculate the value of \( C_1 \).

D. Calculate the value of \( C_2 \).

E. What is the amount AC ripple at the output?
F. Draw the final circuit showing the calculated values. Use a separate sheet of paper for your drawing.

**Answers**

A. \( V_p = 6.3 \times \sqrt{2} = 8.91 \text{ V}, V_x = 90 \text{ percent of } V_p = 8.02 \text{ V} \)
   The DC level is 95 percent of \( V_p \), which is 8.46 V.

B. About 35 ohms.

C. 980 \( \mu \text{F} \).

D. Using \( X_{c2} = 5 \text{ ohms} \) and 120 Hz, \( C_2 = 265 \text{ } \mu \text{F} \).

E. At the input to the smoothing section, the AC variation is 8.91 to 8.02, or 0.89 \( V_{pp} \). Using the AC voltage divider equation with \( R_1 = 35 \text{ ohms} \) and \( X_{c2} = 5 \text{ ohms} \), AC \( V_{out} \) equals about 0.13 \( V_{pp} \). Therefore, the AC variation at the output is 5.065 to 4.935 V, a very small AC ripple.

F. See Figure 11-40.

![Figure 11-40](image)

Using the simple procedure shown here always produces a working power supply circuit. This is not the only design procedure you can use for power supplies, but it is one of the simplest and most effective.

**Summary**

This chapter introduced the following concepts and calculations related to power supplies:

**THE EFFECTS OF DIODES ON AC SIGNALS**

- Methods of rectifying an AC signal
- Half-wave and full-wave rectifier circuit designs
- The calculations you can use to determine component values for half-wave and full-wave rectifier power supply circuits
Self-Test

These questions test your understanding of the information presented in this chapter. Use a separate sheet of paper for your diagrams or calculations. Compare your answers with the answers provided following the test.

In questions 1 through 5, draw the output waveform of each circuit. The input is given in each case.

1. See Figure 11-41.

![Figure 11-41](image)

2. See Figure 11-42.

![Figure 11-42](image)

3. See Figure 11-43.

![Figure 11-43](image)
4. See Figure 11-44.

![Figure 11-44](image)

5. See Figure 11-45.

![Figure 11-45](image)

6. In the circuit shown in Figure 11-46, 100 V rms at 60 Hz appears at the secondary coil of the transformer; 28 V DC with as little AC ripple as possible is required across the 220 ohm load. Find $R_1$, $C_1$, and $C_2$. Find the approximate AC ripple.

![Figure 11-46](image)

**Answers to Self-Test**

If your answers do not agree with those given here, review the problems indicated in parentheses.
1. See Figure 11-47. (problems 1–5)

![Figure 11-47](image)

2. See Figure 11-48. (problem 2)

![Figure 11-48](image)

3. See Figure 11-49. (problem 11)

![Figure 11-49](image)

4. See Figure 11-50. (problem 13)

![Figure 11-50](image)

5. See Figure 11-51. (problems 15–18)

![Figure 11-51](image)

6. \[ R_1 = 833 \text{ ohms}, C_1 = 79 \mu\text{F}, \text{ let } X_c2 = 22 \text{ ohms and then } C_2 = 60 \mu\text{F} \] (problems 26–30)

\[ ACV_{\text{out}} = 14 \times \frac{22}{\sqrt{(22^2 \times 833^2)}} = 0.37 V_{pp} \]
CHAPTER
12

Conclusion and Final Self-Test

In this book, you have discovered basic concepts and formulas that will provide a foundation for your studies in modern electronics, whether you become a dedicated hobbyist, or go on to study electrical or electronics engineering.

Conclusion

Having read this book, you should now know enough to read intermediate-level electronics books and articles intelligently, to build electronics circuits and projects, and to pursue electronics to whatever depth and for whatever reason you wish. Specifically, you should now be able to do the following:

- Recognize all the important, discrete electronics components in a schematic diagram.
- Understand how circuits that use discrete components work.
- Calculate the component values needed for circuits to function efficiently.
- Design simple circuits.
- Build simple circuits and electronics projects.

To see how much you have learned, you may want to take the final self-test at the end of this chapter. It tests your comprehension of the concepts and formulas presented throughout this book.

Once you complete the following self-test and feel confident that you have mastered the information in this book, refer to Appendix E for additional resources for further learning, including the following:
Books such as *The Art of Electronics* by Paul Horowitz and Winfield Hill (New York: Cambridge University Press, 1989) provide a great next step in further electronics study.

You can buy books that step you through electronics projects, such as *Electronics Projects For Dummies* by Earl Boysen and Nancy Muir (Indianapolis: Wiley, 2006), to help you get set up and get hands-on practice.

You can browse Web sites for electronic project ideas.

Earl Boysen’s Web site, www.buildinggadgets.com, provides tips, ideas, and links to a variety of great online resources.

**NOTE** For those interested in more serious study, you should be aware that there is a difference between the path you take to become an electrician (or technician) and an electrical (or electronics) engineer. Training for electronics technicians is available in military trade schools, public and private vocational schools, and in many high schools. Engineers are required to understand the mathematical details in more depth, and must take at least a four-year curriculum at an accredited college or university.

Whatever your goal, you can feel confident that this book has given you a solid grounding for your future studies. Wherever you go in electronics, good luck!

**Final Self-Test**

This final test allows you to assess your overall knowledge of electronics. Answers and review references follow the test. Use a separate sheet of paper for your calculations and drawings.

1. If \( R = 1 \text{ M}\Omega \) and \( I = 2 \mu\text{A} \), find the voltage.

2. If \( V = 5 \text{ V} \) and \( R = 10 \text{ k}\Omega \), find the current.

3. If \( V = 28 \text{ V} \) and \( I = 4 \text{ A} \), find the resistance.

4. If 330 ohms and 220 ohms are connected in parallel, find the equivalent resistance.

5. If \( V = 28 \text{ V} \) and \( I = 5 \text{ mA} \), find the power.
6. If the current through a 220 ohm resistor is 30.2 mA, what is the power dissipated by the resistor?

7. If the power rating of a 1000 ohm resistor is 0.5 watts, what will be the maximum current that should safely flow through the resistor?

8. If a 10 ohm resistor is in series with a 32 ohm resistor and the combination is across a 12 volt supply, what is the voltage drop across each resistor, and what will the two voltage drops add up to?

9. A current of 1 ampere splits between 6 ohm and 12 ohm resistors in parallel. Find the current through each.

10. A current of 273 mA splits between 330 ohm and 660 ohm resistors in parallel. Find the current through each resistor.

11. If \( R = 10 \, k\Omega \) and \( C = 1 \, \mu F \), find the time constant.

12. If \( R = 1 \, M\Omega \) and \( C = 250 \, \mu F \), find the time constant.

13. Three capacitors of 1 \( \mu F \), 2 \( \mu F \), and 3 \( \mu F \) are connected in parallel. Find the total capacitance.

14. Three capacitors of 100 \( \mu F \), 220 \( \mu F \), and 220 \( \mu F \) are connected in series. Find the total capacitance.

15. Three capacitors of 22 pF, 22 pF, and 33 pF are connected in series. Find the total capacitance.

16. What is the knee voltage for a germanium diode?

17. What is the knee voltage for a silicon diode?
18. In the circuit shown in Figure 12-1, \( V_S = 5 \text{ V} \), \( R = 1 \, \text{k}\Omega \), find the current through the diode, \( I_D \).

![Figure 12-1](image)

19. For the circuit in question 15, \( V = 12 \text{ V} \) and \( R = 100 \text{ ohms} \). Find \( I_D \).

20. For the circuit shown in Figure 12-2, \( V_S = 100 \text{ V} \), \( R_1 = 7.2 \, \text{k}\Omega \), \( R_2 = 4 \, \text{k}\Omega \), and \( V_Z = 28 \text{ V} \). Find the current through the zener diode, \( I_Z \).

![Figure 12-2](image)

21. For the circuit in Figure 12-2, \( V_S = 10 \text{ V} \), \( R_1 = 1 \, \text{k}\Omega \), \( R_2 = 10 \, \text{k}\Omega \), and \( V_Z = 6.3 \text{ V} \). Find \( I_Z \).

22. Use the circuit shown in Figure 12-3 to answer this question.

![Figure 12-3](image)

Find the DC collector voltage, \( V_C \), if \( V_S = 28 \text{ V} \), \( \beta = 10 \), \( R_B = 200 \, \text{k}\Omega \), \( R_C = 10 \, \text{k}\Omega \).
23. Again using the circuit shown in Figure 12-3, find \( R_B \) if \( V_S = 12 \text{ V} \), \( \beta = 250 \), \( R_C = 2.2 \text{ k}\Omega \), \( V_C = 6 \text{ V} \).

24. Using the circuit shown in Figure 12-3, find \( \beta \) if \( V_S = 10 \text{ V} \), \( R_B = 100 \text{ k}\Omega \), \( R_C = 1 \text{ k}\Omega \), \( V_C = 5 \text{ V} \).

25. What are the three terminals for a JFET called, and which one controls the operation of the JFET?

When is the drain current of a JFET at its maximum value?

26. Use the circuit shown in Figure 12-4 to answer this question.

![Figure 12-4](image)

Find the value of \( R_B \) required to turn the transistor ON if \( V_S = 14 \text{ V} \), \( R_C = 10 \text{ k}\Omega \), \( \beta = 50 \).

27. Again, using the circuit shown in Figure 12-4, find the value of \( R_B \) required to turn the transistor ON if \( V_S = 5 \text{ V} \), \( R_C = 4.7 \text{ k}\Omega \), \( \beta = 100 \).

28. Use the circuit shown in Figure 12-5 to answer this question.

![Figure 12-5](image)
Find the values of $R_1$, $R_2$, and $R_3$ that will enable the switch to turn $Q_2$ ON and OFF, if $V_S = 10 \text{ V}$, $\beta_1 = 50$, $\beta_2 = 20$, $R_4 = 2.2 \text{ k} \Omega$.

29. Again, using the circuit shown in Figure 12-5, find the values of $R_1$, $R_2$, and $R_3$ that will enable the switch to turn $Q_2$ ON and OFF if $V_S = 28 \text{ V}$, $\beta_1 = 30$, $\beta_2 = 10$, $R_4 = 220 \Omega$.

30. An N-channel JFET has a drain saturation current of $I_{DSS} = 14 \text{ mA}$. If a 28 V drain supply is used, calculate the drain resistance, $R_D$.

31. Draw one cycle of a sine wave.

32. Mark in $V_{pp}$, $V_{rms}$, and the period of the waveform on your drawing for question 31.

33. If $V_{pp} = 10 \text{ V}$, find $V_{rms}$.

34. If $V_{rms} = 120 \text{ V}$, find $V_{pp}$.

35. If the frequency of a sine wave is 14.5 kHz, what is the period of the waveform?

36. Find the reactance $X_C$ for a 200 $\mu$F capacitor when the frequency is 60 Hz.

37. Find the value of the capacitance that gives a 50 ohm reactance at a frequency of 10 kHz.

38. Find the inductive reactance $X_L$ for a 10 mH inductor when the frequency is 440 Hz.
39. Find the value of the inductance that has 100 ohms reactance when the frequency is 1 kHz.

40. Find the series and parallel resonant frequency of a 0.1 µF capacitor and a 4 mH inductor that has negligible internal resistance.

41. For this question refer to the circuit shown in Figure 12-6.

\[ \begin{align*}
\text{Figure 12-6} \\
&\text{Find } X_C, Z, V_{out}, I, \tan \theta, \text{ and } \theta \text{ if } V_{in} = 10 \text{ V}_{pp}, f = 1 \text{ kHz}, C = 0.1 \mu F, R = 1600 \text{ ohms.}
\end{align*} \]

42. Again, using the circuit shown in Figure 12-6, find \( X_C, Z, V_{out}, I, \tan \theta, \) and \( \theta \) if \( V_{in} = 120 \text{ V}_{rms}, f = 60 \text{ Hz}, C = 0.33 \mu F, R = 6 \text{ k} \Omega. \)

43. For this question, refer to the circuit shown in Figure 12-7.

\[ \begin{align*}
\text{Figure 12-7} \\
&\text{Find } X_C, AC V_{out}, \text{ and DC } V_{out} \text{ if } V_{in} = 1 \text{ V}_{pp} \text{ AC, riding on a 5 V DC level; } f = 10 \text{ kHz; } R_1 = 10 \text{ k} \Omega; R_2 = 10 \text{ k} \Omega; C = 0.2 \mu F.
\end{align*} \]

44. Again, using the circuit shown in Figure 12-7, find \( X_C, AC V_{out}, \) and \( DC V_{out} \) if \( V_{in} = 0.5 \text{ V}_{pp} \text{ AC, riding on a 10 V DC level; } f = 120 \text{ Hz; } R_1 = 80 \text{ ohms; } R_2 = 20 \text{ ohms; } C = 1000 \mu F.\)
45. For this question, refer to the circuit shown in Figure 12-8.

In this circuit, \( V_{\text{in}} = 10 \, V_{pp} \, \text{AC}, \) riding on a 5 V DC level; \( f = 1 \, \text{kHz}; \) \( L = 10 \, \text{mH}; \) \( r = 9 \, \text{ohms}; \) \( R = 54 \, \text{ohms}. \) Find AC \( V_{\text{out}}, \) DC \( V_{\text{out}}, \) \( X_L, \) \( Z, \) \( \tan \theta, \) and \( \theta. \)

46. In the circuit shown in Figure 12-9, \( L = 1 \, \text{mH}, \) \( C = 0.1 \, \mu\text{F}, \) and \( R = 10 \, \text{ohms}. \)

Find \( f_r, \) \( X_L, \) \( X_C, \) \( Z, \) \( Q, \) and the bandwidth.

47. In the circuit shown in Figure 12-10, \( L = 10 \, \text{mH}, \) \( C = 0.02 \, \mu\text{F}, \) and \( r = 7 \, \text{ohms}. \)

Find \( f_r, \) \( X_L, \) \( X_C, \) \( Z, \) \( Q, \) and the bandwidth.

48. If the voltage across the resonant circuit of question 47 is at a peak value of 8 V at the resonant frequency, what is the voltage at the half power points?

What are the half power frequencies?
49. Use the amplifier circuit shown in Figure 12-11 to answer this question.

![Amplifier Circuit](image)

**Figure 12-11**

Find the values of $R_1$, $R_2$, and $R_E$ that will provide the amplifier with a voltage gain of 10. Use $V_S = 28 \text{ V}$, $R_C = 1 \text{k}\Omega$, $\beta = 100$.

50. Again, using the circuit shown in Figure 12-11, find the values of $R_1$, $R_2$, and $R_E$ that will provide the amplifier a voltage gain of 20. Use $V_S = 10 \text{ V}$, $R_C = 2.2 \text{k}\Omega$, $\beta = 50$.

51. Using the circuit shown in Figure 12-11, how would you modify the amplifier in question 50 to obtain a maximum gain? Assume that the lowest frequency it has to pass is 50 Hz.

52. Using the JFET amplifier circuit shown in problem 42 of Chapter 1, with a bias point of $V_{GS} = -2.8 \text{ V}$, a drain current of $I_D = 2.7 \text{ mA}$, and $V_{DS} = 12 \text{ V}$, find the values of $R_S$ and $R_D$.

53. If the transconductance of the JFET used in question 52 is 4000 $\mu$hmhos, what will the AC voltage gain be?

54. A certain op-amp circuit uses an input resistance of 8 k$\Omega$ to an inverting input. In order for the op-amp circuit to have a gain of 85, what should the value of the feedback resistance be?
55. If the input to the op-amp circuit of question 54 is 2 mV, what is the output?

56. What is an oscillator?

57. Why is positive feedback rather than negative feedback necessary in an oscillator?

58. What feedback method is used in a Colpitts oscillator?

59. What feedback method is used in a Hartley oscillator?

60. Draw the circuit of a Colpitts oscillator.

61. Draw the circuit of a Hartley oscillator.

62. What is the formula used to calculate the output frequency of an oscillator?

63. Draw the circuit symbol for a transformer with a center tap.

64. Name the two main coils used on a transformer.

65. What is the equation that shows the relationship between the input voltage, the output voltage, and the number of turns in each coil of a transformer?
66. What is the equation that shows the relationship between the turns ratio and the currents in the primary and secondary coils of the transformer?

67. What is the equation that shows the relationship between the impedance of the primary coil, the impedance of the secondary coil, and the number of turns in each coil of a transformer?

68. What are the two main uses for transformers?

69. Draw a simple half-wave rectifier circuit with a smoothing filter at the output.

70. Draw a simple full-wave rectifier circuit using a center tap transformer and a smoothing filter at the output.

71. Given a 10 Vrms input to a full-wave rectified power supply, calculate the values of R₁, C₁ and C₂ (see Figure 12-12) that results in a 5 V DC output across a 50 ohm load.

![Figure 12-12](image)

**Answers to Final Self-Test**

The references in parentheses to the right of the answers give you the chapter and problem number where the material is introduced so that you can easily review any concepts covered in the test.
# Conclusion and Final Self-Test

1. \( V = 2 \text{ V} \)  
   (Chapter 1, problem 5)
2. \( I = 0.5 \text{ mA} \)  
   (Chapter 1, problem 6)
3. \( R = 7 \text{ ohms} \)  
   (Chapter 1, problem 7)
4. \( 132 \text{ ohms} \)  
   (Chapter 1, problem 10)
5. \( P = 140 \text{ milliwatts or 0.14 watts} \)  
   (Chapter 1, problems 13 and 14)
6. \( 0.2 \text{ W} \)  
   (Chapter 1, problems 13 and 15)
7. \( 22.36 \text{ mA} \)  
   (Chapter 1, problems 13 and 16)
8. \( 2.86 \text{ V, 9.14 V, 12 V} \)  
   (Chapter 1, problems 23 and 26)
9. \( 2/3 \text{ A through the 6 ohm resistor; 1/3 A through the 12 ohm resistor} \)  
   (Chapter 1, problem 28 or 29)
10. \( 91 \text{ mA through the 660 ohm resistor; 182 mA through the 330 ohm resistor} \)  
    (Chapter 1, problem 28 or 29)
11. \( \tau = 0.01 \text{ seconds} \)  
    (Chapter 1, problem 34)
12. \( \tau = 250 \text{ seconds} \)  
    (Chapter 1, problem 34)
13. \( 6 \mu F \)  
    (Chapter 1, problem 40)
14. \( 52.4 \mu F \)  
    (Chapter 1, problem 41)
15. \( 8.25 \mu F \)  
    (Chapter 1, problem 41)
16. Approximately 0.3 V  
    (Chapter 2, problem 10)
17. Approximately 0.7 V  
    (Chapter 2, problem 10)
18. \( I_D = 4.3 \text{ mA} \)  
    (Chapter 2, problem 14)
19. \( I_D = 120 \text{ mA} \)  
    (Chapter 2, problem 14)
20. \( I_Z = 3 \text{ mA} \)  
    (Chapter 2, problem 31)
21. \( I_Z = 3.07 \text{ mA} \)  
    (Chapter 2, problem 31)
22. \( V_C = 14 \text{ V} \)  
    (Chapter 3, problems 21–24)
23. \( R_B = 1.1 \text{ M} \Omega \)  
    (Chapter 3, problems 21–24)
24. \( \beta = 50 \)  
    (Chapter 3, problems 21–24)
25. Drain, source, and gate, with the gate acting to control the JFET  
    (Chapter 3, problem 29)
26. \( R_B = 500 \text{ k} \Omega \)  
    (Chapter 4, problems 8)
27. \( R_B = 470 \text{ k} \Omega \)  
    (Chapter 4, problems 4–8)
28. $R_3 = 44 \, k\Omega, R_1 = 2.2 \, k\Omega, R_2 = 2.2 \, k\Omega$ (Chapter 4, problems 19–23)

29. $R_3 = 2.2 \, k\Omega, R_1 = 66 \, k\Omega, R_2 = 66 \, k\Omega$ (Chapter 4, problems 19–23)

30. $R_0 = 2 \, k\Omega$ (Chapter 4, problem 39)

31. See Figure 12-13. (Chapter 5, problem 7)

32. See Figure 12-14. (Chapter 5, problems 3 and 7)

33. 3.535 V (Chapter 5, problem 4)

34. 340 V (Chapter 5, problem 5)

35. 69 µsec (Chapter 5, problem 7)

36. 13.3 ohms (Chapter 5, problem 14)

37. 0.32 µF (Chapter 5, problem 14)

38. 27.6 ohms (Chapter 5, problem 17)

39. 16 mH (Chapter 5, problem 17)

40. 8 kHz (Chapter 5, problems 19 and 21)

41. $X_C = 1.6 \, k\Omega, Z = 2263 \, \text{ohms}, V_{out} = 7.07 \, V, I = 4.4 \, mA, \tan \theta = 1, \theta = 45 \, \text{degrees}$ (Chapter 6, problems 10 and 23)
390 Chapter 12  •  Conclusion and Final Self-Test

42. \( X_C = 8 \, \text{k}\Omega, Z = 10 \, \text{k}\Omega, V_{out} = 72 \, \text{V}, I = 12 \, \text{mA}, \tan \theta = 1.33, \theta = 53.13 \, \text{degrees} \)  
   (Chapter 6, problems 10 and 23)

43. \( X_C = 80 \, \text{ohms}, AC \, V_{out} = 8 \, \text{mV}, DC \, V_{out} = 2.5 \, \text{V} \)
   (Chapter 6, problem 26)

44. \( X_C = 1.33 \, \text{ohms}, AC \, V_{out} = 8.3 \, \text{mV}, DC \, V_{out} = 2 \, \text{V} \)
   (Chapter 6, problem 26)

45. \( X_L = 62.8 \, \text{ohms}, Z = 89 \, \text{ohms}, AC \, V_{out} = 6.07 \, \text{V}, DC \, V_{out} = 4.3 \, \text{V}, \tan \theta = 1, \theta = 45 \, \text{degrees} \)
   (Chapter 6, problems 31 and 35)

46. \( f_r = 16 \, \text{kHz}, X_L = 100 \, \text{ohms}, X_C = 100 \, \text{ohms}, Z = 10 \, \text{ohms}, Q = 10, BW = 1.6 \, \text{k}\Omega \)
   (Chapter 7, problems 2, 6, and 20)

47. \( f_r = 11,254 \, \text{Hz}, X_L = X_C = 707 \, \text{ohms}, Z = 71.4 \, \text{k}\Omega, Q = 101, BW = 111 \, \text{Hz} \)
   (Chapter 7, problems 10, 11, and 20)

48. \( V_{hp} = 5.656 \, \text{V}, f_{1hp} = 11,198 \, \text{Hz}, f_{2hp} = 11,310 \, \text{V} \)
   (Chapter 7, problem 27)

49. Your values should be close to the following:  
   \( R_E = 100 \, \text{ohms}, V_C = 14 \, \text{V}, V_E = 1.4 \, \text{V}, V_B = 2.1 \, \text{V}, R_2 = 1.5 \, \text{k}\Omega, R_1 = 16.8 \, \text{k}\Omega \)
   (Chapter 8, problem 17)

50. \( R_E = 110 \, \text{ohms}, V_C = 5 \, \text{V}, V_E = 0.25 \, \text{V}, V_B = 0.95 \, \text{V}, R_2 = 2.2 \, \text{k}\Omega, R_1 = 18.1 \, \text{k}\Omega \)
   (Chapter 8, problem 17)

51. The gain can be increased by using a capacitor to bypass the emitter resistor \( R_E; C_E = 300 \, \mu\text{F} \) (approximately).
   (Chapter 8, problem 20)

52. \( R_S = 1.04 \, \text{k}\Omega, R_D = 3.41 \, \text{k}\Omega \)
   (Chapter 8, problem 42)

53. \( A_v = -13.6 \)
   (Chapter 8, problem 39)

54. \( R_F = 680 \, \text{k}\Omega \)
   (Chapter 8, problem 45)

55. \( V_{out} = 170 \, \text{mV} \) and is inverted
   (Chapter 8, problem 45)

56. An oscillator is a circuit that emits a continuous sine wave output, without requiring an input signal. Other types of oscillators exist that do not have sine wave outputs, but they are not discussed in this book.
   (Chapter 9, introduction)

57. Positive feedback causes the amplifier to sustain an oscillation or sine wave at the output. Negative feedback causes the amplifier to stabilize, which reduces oscillations at the output.
   (Chapter 9, problems 2 and 3)

58. A capacitive voltage divider
   (Chapter 9, problem 14)
59. An inductive voltage divider  (Chapter 9, problem 14)

60. See Figure 12-15.  (Chapter 9, problem 24)

<table>
<thead>
<tr>
<th>Circuit Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image_url" alt="Figure 12-15" /></td>
</tr>
</tbody>
</table>

61. See Figure 12-16.  (Chapter 9, problem 25)

<table>
<thead>
<tr>
<th>Circuit Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image_url" alt="Figure 12-16" /></td>
</tr>
</tbody>
</table>

62. \( f_r = \frac{1}{2\pi \sqrt{LC}} \)  (Chapter 9, problem 11)
63. See Figure 12-17. (Chapter 10, problem 4)

![Figure 12-17](center tap)

64. Primary and secondary (Chapter 10, problem 2)

65. \( \frac{V_{in}}{V_{out}} = \frac{V_P}{V_S} = \frac{N_P}{N_S} = TR \) (Chapter 10, problem 6)

66. \( \frac{I_{out}}{I_{in}} = \frac{I_S}{I_P} = \frac{N_P}{N_S} = TR \) (Chapter 10, problem 13)

67. \( \frac{Z_{in}}{Z_{out}} = (\frac{N_P}{N_S})^2 \), or impedance ratio, is the square of the turns ratio (Chapter 10, problem 16)

68. They are used for stepping up or stepping down an AC voltage, and to match impedances between a generator and a load (Chapter 10, introduction)

69. See Figure 12-18. (Chapter 11, problem 14)

![Figure 12-18](DC V_{out} R_1 C_1 C_2)

70. See Figure 12-19. (Chapter 11, problem 31)

![Figure 12-19](AC V_{in} R_1 C_1 C_2)

71. \( R_1 = 84 \text{ ohms}, \ C_1 = 622 \mu F, \ C_2 = 265 \mu F \) (Chapter 11, problems 26–29)
Ampere (A)  The unit of measurement of electric current.

Amplifier  Electronic device or circuit that produces an output signal with greater power, voltage, or current than that provided by the input signal.

Capacitance (C)  The capability of a component to store an electric charge when voltage is applied across the component, measured in farads.

Capacitor  A component that stores electric charge when voltage is applied to it, that can return the charge to a circuit in the form of electric current when the voltage is removed.

Discrete components  Individual electronic parts such as resistors, diodes, capacitors, and transistors.

Diode  A component that conducts current in one direction only.

Farad (F)  The unit of measurement of capacitance.

Feedback  A connection from the output of an amplifier back to the input, where a portion of the output voltage is used to control, stabilize, or modify the operation of the amplifier.
**Appendix A = Glossary**

**Frequency** (f)  Number of cycles of a waveform that occur in a given time period, measured in hertz (cycles per second).

**Ground**  Zero volts. This is the arbitrary reference point in a circuit from which all voltage measurements are made.

**Henry** (H)  The unit of measurement of inductance.

**Impedance** (Z)  Total opposition (resistance and reactance) of a circuit to AC current flow, measured in ohms.

**Inductance** (L)  The property of a component that opposes any change in an existing current, measured in henrys.

**Inductor**  A coil of wire whose magnetic field opposes changes in current flow when the voltage across the coil is changed.

**Integrated circuit** (IC)  Electronic component in the form of a very small silicon chip in which numerous transistors and other components have been built to form a circuit.

**Kirchhoff’s laws**  A set of formulas that form the basis for DC and AC circuit analysis, including: current law (KCL): The sum of all currents at a junction equals zero; and voltage law (KVL): The sum of all voltages in a loop equals zero.

**Ohm** (Ω)  The unit of measurement of resistance.

**Ohm’s law**  A formula used to calculate the relationship between voltage, current, and resistance, expressed as $V = IR$. Also expressed as $E = IR$.

**Operational amplifier** (op-amp)  An integrated circuit, multi-stage amplifier. An op-amp is much smaller and, therefore, more practical than an equivalent amplifier made with discrete components.

**Oscillator**  An electronic circuit that produces a continuous output signal such as a sine wave or square wave.

**Phase angle**  For a signal, the angle of lead or lag between the current waveform and the voltage waveform.

**Phase shift**  The change in phase of a signal as it passes through a circuit, such as in an amplifier.
Power  The expenditure of energy over time. Power is measured in watts.

Reactance (X)  The degree of opposition of a component to the flow of alternating current (AC), measured in ohms. There are two types of reactance: capacitive reactance ($X_C$) exhibited by capacitors and inductive reactance ($X_L$) exhibited by inductors.

Rectification  The process of changing alternating current (AC) to direct current (DC).

Resistance (R)  The degree of opposition of a component to the flow of electric current, measured in ohms.

Resistor  A component whose value is determined by the amount of opposition it has to the flow of electric current.

Semiconductor  A material that has electrical characteristics of a conductor or an insulator, depending on how it is treated. Silicon is the semiconductor material most commonly used in electronic components.

Transformer  A component that transforms an input AC voltage to either a higher level (step up transformer) or a lower level (step down transformer) AC voltage.

Transistor, BJT  A bipolar junction transistor (BJT) is a semiconductor component that can either be used as a switch or an amplifier. In either case, a small input signal controls the transistor, producing a much larger output signal.

Transistor, JFET  A junction field effect transistor (JFET), like the bipolar junction transistor, can be used either as a switch or an amplifier.

Transistor, MOSFET  Metal oxide silicon field effect transistor (MOSFET); like the BJT and JFET, a MOSFET can be used either as a switch or an amplifier. The MOSFET is the most commonly used transistor in integrated circuits.

Turns ratio (TR)  The ratio of the number of turns in the primary or input winding of a transformer to the number of turns in the secondary or output winding.

Volt (V)  The unit of measurement for the potential difference that causes a current to flow through a conductor.
Watt (W)  Unit of electric power dissipated as heat when 1 amp of current flows through a component that has 1 volt applied across it.

Zener  A particular type of diode that will flow current at a definite reverse-bias voltage level.
## List of Symbols and Abbreviations

The following table lists common symbols and abbreviations.

<table>
<thead>
<tr>
<th>SYMBOL/ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>$A_V$</td>
<td>AC voltage gain</td>
</tr>
<tr>
<td>$\beta$ (beta)</td>
<td>Current gain</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>F</td>
<td>Farad</td>
</tr>
<tr>
<td>$g_m$</td>
<td>Transconductance</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>$f_r$</td>
<td>Resonant frequency</td>
</tr>
<tr>
<td>H</td>
<td>Henry</td>
</tr>
</tbody>
</table>
### List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>SYMBOL/ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>I</td>
<td>Electric current</td>
</tr>
<tr>
<td>I&lt;sub&gt;B&lt;/sub&gt;</td>
<td>Base current</td>
</tr>
<tr>
<td>I&lt;sub&gt;C&lt;/sub&gt;</td>
<td>Collector current</td>
</tr>
<tr>
<td>I&lt;sub&gt;D&lt;/sub&gt;</td>
<td>Drain current of a FET; also current through a diode</td>
</tr>
<tr>
<td>I&lt;sub&gt;DSS&lt;/sub&gt;</td>
<td>Saturation current</td>
</tr>
<tr>
<td>L</td>
<td>Inductor</td>
</tr>
<tr>
<td>L&lt;sub&gt;C&lt;/sub&gt;</td>
<td>Inductor-capacitor circuit</td>
</tr>
<tr>
<td>N&lt;sub&gt;p&lt;/sub&gt;</td>
<td>Number of turns in a primary coil</td>
</tr>
<tr>
<td>N&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Number of turns in a secondary coil</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohms</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>Q</td>
<td>Transistor, also the Q value of a resonant circuit</td>
</tr>
<tr>
<td>R</td>
<td>Resistor</td>
</tr>
<tr>
<td>R&lt;sub&gt;in&lt;/sub&gt;</td>
<td>Input resistance of a transistor</td>
</tr>
<tr>
<td>r</td>
<td>DC resistance of an inductor</td>
</tr>
<tr>
<td>T</td>
<td>Period of a waveform</td>
</tr>
<tr>
<td>τ</td>
<td>Time constant</td>
</tr>
<tr>
<td>TR</td>
<td>Turns ratio</td>
</tr>
<tr>
<td>θ</td>
<td>Phase angle</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>V&lt;sub&gt;C&lt;/sub&gt;</td>
<td>Voltage at the collector of a transistor</td>
</tr>
<tr>
<td>V&lt;sub&gt;DD&lt;/sub&gt;</td>
<td>Drain supply voltage</td>
</tr>
<tr>
<td>V&lt;sub&gt;E&lt;/sub&gt;</td>
<td>Voltage at the emitter of a transistor</td>
</tr>
<tr>
<td>V&lt;sub&gt;GG&lt;/sub&gt;</td>
<td>Gate supply voltage</td>
</tr>
<tr>
<td>V&lt;sub&gt;GS&lt;/sub&gt;</td>
<td>Gate to source voltage</td>
</tr>
<tr>
<td>V&lt;sub&gt;GS(off)&lt;/sub&gt;</td>
<td>Gate to source cutoff voltage</td>
</tr>
<tr>
<td>V&lt;sub&gt;in&lt;/sub&gt;</td>
<td>AC voltage of an input signal</td>
</tr>
<tr>
<td>V&lt;sub&gt;out&lt;/sub&gt;</td>
<td>AC output voltage</td>
</tr>
</tbody>
</table>
## List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>SYMBOL/ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_p$</td>
<td>Peak voltage</td>
</tr>
<tr>
<td>$V_{pp}$</td>
<td>Peak-to-peak voltage</td>
</tr>
<tr>
<td>$V_{rms}$</td>
<td>Root mean square voltage</td>
</tr>
<tr>
<td>$V_S$</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>$W$</td>
<td>Watts</td>
</tr>
<tr>
<td>$X_C$</td>
<td>Reactance of a capacitor</td>
</tr>
<tr>
<td>$X_L$</td>
<td>Reactance of an inductor</td>
</tr>
<tr>
<td>$Z$</td>
<td>Impedance</td>
</tr>
</tbody>
</table>
## Appendix C: Powers of Ten and Engineering Prefixes

The following table shows powers of the number 10, decimal equivalents, prefixes used to denote the value, symbols used, and an example.

<table>
<thead>
<tr>
<th>POWER</th>
<th>DECIMAL</th>
<th>PREFIX</th>
<th>SYMBOL</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^9$</td>
<td>1,000,000,000</td>
<td>Giga-</td>
<td>G</td>
<td>Gohms</td>
</tr>
<tr>
<td>$10^6$</td>
<td>1,000,000</td>
<td>Mega-</td>
<td>M</td>
<td>Mohms</td>
</tr>
<tr>
<td>$10^3$</td>
<td>1,000</td>
<td>Kilo-</td>
<td>k</td>
<td>kohms</td>
</tr>
<tr>
<td>$10^{-3}$</td>
<td>0.001</td>
<td>Milli-</td>
<td>m</td>
<td>mA</td>
</tr>
<tr>
<td>$10^{-6}$</td>
<td>0.000,001</td>
<td>Micro-</td>
<td>µ</td>
<td>µA</td>
</tr>
<tr>
<td>$10^{-9}$</td>
<td>0.000,000,001</td>
<td>Nano-</td>
<td>n</td>
<td>nsec</td>
</tr>
<tr>
<td>$10^{-12}$</td>
<td>0.000,000,000,001</td>
<td>Pico-</td>
<td>p</td>
<td>pF</td>
</tr>
</tbody>
</table>
Standard Composition Resistor Values

The most commonly-used type of resistor is the carbon composition resistor with a ± 5 percent tolerance and either a 1/4 or 1/2 watt power rating. The standard resistance values for this type of resistor are listed here (in ohms). You should be able to purchase resistors at any of these values through the online distributors listed in Appendix E. Power resistors are available with fewer resistance values, which you can find in various suppliers’ catalogs.

NOTE In the following, “k” represents kilo-ohms, so 7.5 k translates into 7,500 ohms. Similarly, “M” stands for megohms, so a value of 3.6 M represents 3,600,000 ohms.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>24</td>
<td>270</td>
<td>3.0 k</td>
<td>33 k</td>
<td>360 k</td>
</tr>
<tr>
<td>2.4</td>
<td>27</td>
<td>300</td>
<td>3.3 k</td>
<td>36 k</td>
<td>390 k</td>
</tr>
<tr>
<td>2.7</td>
<td>30</td>
<td>330</td>
<td>3.6 k</td>
<td>39 k</td>
<td>430 k</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>360</td>
<td>3.9 k</td>
<td>43 k</td>
<td>470 k</td>
</tr>
<tr>
<td>3.3</td>
<td>36</td>
<td>390</td>
<td>4.3 k</td>
<td>47 k</td>
<td>510 k</td>
</tr>
<tr>
<td>3.6</td>
<td>39</td>
<td>430</td>
<td>4.7 k</td>
<td>51 k</td>
<td>560 k</td>
</tr>
<tr>
<td>3.9</td>
<td>43</td>
<td>470</td>
<td>5.1 k</td>
<td>56 k</td>
<td>620 k</td>
</tr>
</tbody>
</table>
### Appendix D - Standard Composition Resistor Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Resistance 1</th>
<th>Resistance 2</th>
<th>Resistance 3</th>
<th>Resistance 4</th>
<th>Resistance 5</th>
<th>Resistance 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>47</td>
<td>510</td>
<td>5.6 k</td>
<td>62 k</td>
<td>680 k</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>51</td>
<td>560</td>
<td>6.2 k</td>
<td>68 k</td>
<td>750 k</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>56</td>
<td>620</td>
<td>6.8 k</td>
<td>75 k</td>
<td>820 k</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>62</td>
<td>680</td>
<td>7.5 k</td>
<td>82 k</td>
<td>910 k</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>68</td>
<td>750</td>
<td>8.2 k</td>
<td>91 k</td>
<td>1.0 M</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>75</td>
<td>820</td>
<td>9.1 k</td>
<td>100 k</td>
<td>1.2 M</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>82</td>
<td>910</td>
<td>10 k</td>
<td>110 k</td>
<td>1.5 M</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>91</td>
<td>1.0 k</td>
<td>11 k</td>
<td>120 k</td>
<td>1.8 M</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>100</td>
<td>1.1 k</td>
<td>12 k</td>
<td>130 k</td>
<td>2.2 M</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>1.2 k</td>
<td>13 k</td>
<td>150 k</td>
<td>2.4 M</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>120</td>
<td>1.3 k</td>
<td>15 k</td>
<td>160 k</td>
<td>2.7 M</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>130</td>
<td>1.5 k</td>
<td>16 k</td>
<td>180 k</td>
<td>3.3 M</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>150</td>
<td>1.6 k</td>
<td>18 k</td>
<td>200 k</td>
<td>3.6 M</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>160</td>
<td>1.8 k</td>
<td>20 k</td>
<td>220 k</td>
<td>3.9 M</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>180</td>
<td>2.0 k</td>
<td>22 k</td>
<td>240 k</td>
<td>4.7 M</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>200</td>
<td>2.2 k</td>
<td>24 k</td>
<td>270 k</td>
<td>5.6 M</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>220</td>
<td>2.4 k</td>
<td>27 k</td>
<td>300 k</td>
<td>6.8 M</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>240</td>
<td>2.7 k</td>
<td>30 k</td>
<td>330 k</td>
<td>8.2 M</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Resources

The following list of books, magazines, tutorials, and electronics suppliers may be of interest to the reader who is seeking more knowledge regarding either basic electronics concepts, reference material for circuit design, or the supplies needed to build circuits.

Web Sites

- **Building Gadgets** ([www.buildinggadgets.com/](http://www.buildinggadgets.com/)) — An electronics reference site maintained by Earl Boysen (one of the authors of this book). There are lots of handy links to electronics tutorials, discussion forums, suppliers, and interesting electronics projects here.

- **All About Circuits** ([www.allaboutcircuits.com/](http://www.allaboutcircuits.com/)) — Includes an online book on electronics theory and circuits, as well as discussion forums on electronics projects, microcontrollers, and general electronics issues.


- **Williamson Labs** ([www.williamson-labs.com/](http://www.williamson-labs.com/)) — Tutorials on electronics components and circuits. Many of these tutorials include
Appendix E  Supplemental Resources

animated illustrations that may help you understand how each circuit functions.

- **Electro Tech online** ([www.electro-tech-online.com/](http://www.electro-tech-online.com/)) — Discussion forum on electronics projects and general electronics issues.

- **Electronics Lab** ([www.electronics-lab.com/forum/](http://www.electronics-lab.com/forum/)) — Discussion forum on project design, electronics theory, and microcontrollers along with a collection of a few hundred interesting projects.


### Books


### Magazines

- **Everyday Practical Electronics Magazine** ([www.epemag.wimborne.co.uk/](http://www.epemag.wimborne.co.uk/)) — Information on new components for hobbyists and projects with focus on circuits using discrete components.
Suppliers

This section shows retail stores and online distributors.

Retail Stores


- **Fry’s Electronics** ([www.frys.com/](http://www.frys.com/)) — Has stores in nine states that carry electronics components.

Online Distributors

- **Jameco Electronics** ([www.jameco.com/](http://www.jameco.com/)) — A medium-sized distributor that carries most of the components you’ll need with a reasonably sized catalog that it’s easy to find components in.

- **Mouser Electronics** ([www.mouser.com/](http://www.mouser.com/)) — A large distributor that carries a wide range of components with a nice ordering system on their Web site that lets you put together separate orders for different projects, very handy if you’re planning multiple projects. They also do a very good job of packaging, clearly labeling components for shipment.

- **Digi-key** ([www.digikey.com/](http://www.digikey.com/)) — Another large distributor with a very broad selection of components. Digi-key may carry components that are hard to find at smaller suppliers.
# Equation Reference

The following table provides a quick reference to common equations.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EQUATION</th>
<th>CHAPTER REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>$BW = \frac{f_r}{Q}$</td>
<td>Chapter 7, problem 20</td>
</tr>
<tr>
<td>Capacitance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Capacitance</td>
<td>$C_T = C_1 + C_2 + \ldots + C_N$</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td>Series Capacitance</td>
<td>$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_N}$, or $C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_N}}$</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td></td>
<td>$C_T = \frac{C_1 C_2}{C_1 + C_2}$ for two capacitors</td>
<td></td>
</tr>
</tbody>
</table>
### Appendix F - Equation Reference

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EQUATION</th>
<th>CHAPTER REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>( f = \frac{1}{T} )</td>
<td>Chapter 5, problem 7</td>
</tr>
<tr>
<td>Resonance Frequency</td>
<td>( f_r = \frac{1}{2\pi\sqrt{LC}} )</td>
<td>Chapter 7, problem 6</td>
</tr>
<tr>
<td>Resonance Frequency</td>
<td>( f_r = \frac{1}{2\pi\sqrt{LC}} \sqrt{1 - \frac{Q^2}{L}} ) if ( Q ) is less than 10</td>
<td>Chapter 7, problem 10</td>
</tr>
<tr>
<td>Resonance Frequency</td>
<td>( f_r = \frac{1}{2\pi\sqrt{LC}} ) if ( Q \geq 10 )</td>
<td>Chapter 7, problem 10</td>
</tr>
<tr>
<td>Gain</td>
<td>( A_V = \frac{V_{out}}{V_{in}} )</td>
<td>Chapter 8, problem 9</td>
</tr>
<tr>
<td>Current Gain</td>
<td>( \beta = \frac{I_C}{I_B} )</td>
<td>Chapter 3, problem 17</td>
</tr>
<tr>
<td>Impedance</td>
<td>( Z = \sqrt{X_C^2 + R^2} )</td>
<td>Chapter 6, problem 8</td>
</tr>
<tr>
<td>Phase Shift</td>
<td>( \tan \theta = \frac{X_C}{R} = \frac{1}{2\pi f C} )</td>
<td>Chapter 6, problem 23</td>
</tr>
<tr>
<td>Phase Shift</td>
<td>( \tan \theta = \frac{X_L}{R} = \frac{2\pi f L}{R} )</td>
<td>Chapter 6, problem 35</td>
</tr>
<tr>
<td>Q Value</td>
<td>( Q = \frac{X_L}{R} )</td>
<td>Chapter 7, problem 20</td>
</tr>
<tr>
<td>Resistance</td>
<td>( \frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N} ), or</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td></td>
<td>( R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N}} ), or</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td></td>
<td>( R_T = \frac{R_1 R_2}{R_1 + R_2} ) for two resistors</td>
<td>Chapter 1, Summary</td>
</tr>
</tbody>
</table>
### PARAMETER

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EQUATION</th>
<th>CHAPTER REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series Resistance</td>
<td>$R_T = R_1 + R_2 + \cdots + R_N$</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td>Power</td>
<td>$P = VI$, or $P = I^2R$, or $P = \frac{V^2}{R}$</td>
<td>Chapter 1, Summary</td>
</tr>
</tbody>
</table>

### Reactance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitive Reactance</td>
<td>$X_C = \frac{1}{2\pi fC}$</td>
<td>Chapter 5, problem 13</td>
</tr>
<tr>
<td>Inductive Reactance</td>
<td>$X_L = 2\pi fL$</td>
<td>Chapter 5, problem 16</td>
</tr>
<tr>
<td>Time Constant</td>
<td>$\tau = RC$</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td>Turns Ratio</td>
<td>$TR = \frac{N_p}{N_s}$</td>
<td>Chapter 11, problem 7</td>
</tr>
</tbody>
</table>

### Voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohm’s Law (DC)</td>
<td>$V = IR$</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td>Ohm’s Law (AC)</td>
<td>$V = Iz$</td>
<td>Chapter 6, problem 8</td>
</tr>
<tr>
<td>Voltage divider</td>
<td>$V_1 = \frac{V_2R_1}{R_T}$</td>
<td>Chapter 1, Summary</td>
</tr>
<tr>
<td>Peak-to-Peak Voltage (sine wave)</td>
<td>$V_{pp} = 2V_p = 2 \times \sqrt{2} \times V_{rms}$</td>
<td>Chapter 5, problem 4</td>
</tr>
<tr>
<td>RMS Voltage (sine wave)</td>
<td>$V_{rms} = \frac{1}{\sqrt{2}} \times V_p = \frac{1}{\sqrt{2}} \times \frac{V_{pp}}{2}$</td>
<td>Chapter 5, problem 4</td>
</tr>
<tr>
<td>Transformer output voltage</td>
<td>$V_{out} = \frac{V_{in}N_s}{N_p}$</td>
<td>Chapter 11, problem 7</td>
</tr>
</tbody>
</table>
Schematic Symbols Used in This Book

The following table shows schematic symbols used in this book.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>![Battery Symbol]</td>
</tr>
<tr>
<td>Capacitor</td>
<td>![Capacitor Symbol]</td>
</tr>
<tr>
<td>Diodes</td>
<td>![Diode Symbol]</td>
</tr>
<tr>
<td>Diode</td>
<td>![Diode Symbol]</td>
</tr>
<tr>
<td>Zener Diode</td>
<td>![Zener Diode Symbol]</td>
</tr>
<tr>
<td>Generator (DC)</td>
<td>![Generator Symbol]</td>
</tr>
</tbody>
</table>
### Appendix G  Schematic Symbols Used in This Book

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>![Ground Symbol]</td>
</tr>
<tr>
<td>Inductor</td>
<td>![Inductor Symbol]</td>
</tr>
<tr>
<td>Lamp</td>
<td>![Lamp Symbol]</td>
</tr>
<tr>
<td>Meters</td>
<td></td>
</tr>
<tr>
<td>Meter</td>
<td>![Meter Symbol]</td>
</tr>
<tr>
<td>Ammeter</td>
<td>![Ammeter Symbol]</td>
</tr>
<tr>
<td>Voltmeter</td>
<td>![Voltmeter Symbol]</td>
</tr>
<tr>
<td>Motor</td>
<td>![Motor Symbol]</td>
</tr>
<tr>
<td>Operational Amplifier</td>
<td>![Operational Amplifier Symbol]</td>
</tr>
<tr>
<td>Resistors</td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td>![Resistor Symbol]</td>
</tr>
<tr>
<td>Variable Resistor (Potentiometer)</td>
<td>![Variable Resistor Symbol]</td>
</tr>
<tr>
<td>Signal Generator (Sine Wave)</td>
<td>![Signal Generator Symbol]</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td><strong>Switches</strong></td>
<td></td>
</tr>
<tr>
<td>Single-pole, Single-throw (SPST) Switch</td>
<td>![Switch Symbol]</td>
</tr>
<tr>
<td>Single-pole, Double-throw (SPDT) Switch</td>
<td>![Switch Symbol]</td>
</tr>
<tr>
<td><strong>Transformers</strong></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>![Transformer Symbol]</td>
</tr>
<tr>
<td>Center Tap Transformer</td>
<td>![Transformer Symbol]</td>
</tr>
<tr>
<td><strong>Transistor</strong></td>
<td></td>
</tr>
<tr>
<td>NPN BJT</td>
<td>![Transistor Symbol]</td>
</tr>
<tr>
<td>PNP BJT</td>
<td>![Transistor Symbol]</td>
</tr>
<tr>
<td><strong>N-channel JFET</strong></td>
<td>![N-channel JFET Symbol]</td>
</tr>
<tr>
<td><strong>P-channel JFET</strong></td>
<td>![P-channel JFET Symbol]</td>
</tr>
</tbody>
</table>
Index

A
AC (alternating current), 22
  circuits
    capacitors, 154–156, 165–167
    inductor, 156–158
    inductors, 190–197
    resistors, 152–154
    diodes in AC circuits, 347–358
    ripple, 359
    signal, capacitor, 187
    signals, 152
      capacitors passing, 166
      sine waves and, 147
AC reactance of an inductor, 156
algebraic formula for Ohm’s law, 3
alternative base switching, 131–137
amperes
  microampere, 11
  milliampere, 11
amplifiers
  analyzing, 271–275
  common base amplifier, 298
  common collector amplifier, 265
  common emitter amplifier, 296–297
  feedback, 294
  input resistance, 265
  JFET as, 275–284
  lowest frequency passed, 273
  operational amplifier, 284–288
  output resistance, 265
  parallel inductor and capacitor, 299
  resonant load, 299
  stability, 252–256
  tuned load, 299
  two-stage, 264
  voltage gain, 249
  anode, 36
    forward biased diode, 38
    voltage, 38
Armstrong method, 304
Armstrong oscillator, 316
attenuation, 181
  fr, 218
B
β (beta), 84–85
  finding of transistor, 87–97
band of frequencies, 221
band-reject filter, 222
bandpass filter, 221
bandwidth of circuits, 221
  calculating, 223
base-collector diode, 75
  current flow, 79
Index = B–C

base current
  collector current, 84
  flow, 110
  need for, 110
base-emitter diode, 75
  current flow, 80
  voltage drop, 111
base-emitter junction, current flow from supply voltage to, 115
batteries, 2, 3
  voltage, 13
biasing, 243, 256–265
bipolar junction transistors. See BJT (bipolar junction transistors)
bipolar transistors, 71
BJT (bipolar junction transistors), 71
  terminals, 97
Boysen, Earl, 378
break down of diode, 57
BW, 221

capacitors
  AC, 22
  AC circuits, 154–156
  capacitor charging graph, 24
  DC circuit, 22–28
  DC signal, 187
  emitter bypass capacitor, 261
  and inductor in series, 208–218
  level of opposition, 168
  passing AC signals, 166
  reactance, 155, 166
  resistors and, 186–190
  in series, 167–174
  voltage, 24, 181
cascading transistor amplifiers, 264
cathode, 36
  voltage, 38
  center tap, 332
characteristic curve of a diode, 41
chemically generating electric current, 2

circuits
  bandwidth, 221
  calculating, 223
  breaking, 20
  completing, 20
  RLC, 208
  time constant, 23
  transistors, soldering, 72
coils, 236
  number of turns, 333
  oscillators, 317
  reversed, 331
  transformers, 329–330
collector, current flow to base, 116
collector current
  base current and, 84
  calculating, 110
  collector-emitter voltage, 89
  collector voltage, ON transistor, 109
  Colpitts method, 304
  Colpitts oscillator circuit, 308–313
  feedback connections, 310
  common base amplifier, 298
  oscillators and, 301
  common collector amplifier, 265
  common emitter amplifier, 296–297
  oscillators and, 301
  communications circuits, transformers in, 338–343
conventional current flow, 3
current
  closed switches, 20
  definition, 2
  KCL (Kirchhoff’s current law), 19
  open switches, 20
  current divider, 17–20
  current flow, 1–4, 3
  direction, 81
  magnetic field and, 234
  current gain, 84
    formula, 85
  currents, small currents, 11–12
cutoff point, 246
cutoff voltage, 140
D
DC circuit, capacitors in, 22–28
DC (direct current), 1
level, 358–373
pre-test, 30–33
pulsating, diodes in AC circuits, 347–358
pure, 359
resistance, 156
signal, capacitor, 187
smoothing pulsating, 358–373
DC circuit, capacitors in, 22–28
DC (direct current), 1
level, 358–373
pre-test, 30–33
pulsating, diodes in AC circuits, 347–358
pure, 359
resistance, 156
signal, capacitor, 187
smoothing pulsating, 358–373
diode
in AC circuits, 347–358
forward biased, 38
perfect diode, 39
reverse biased, 39
diode junction, 36
diodes, 35
backward in circuit, 55
base-collector diode, 75
base-emitter diode, 75
break down, 57
experiment, 40–45
germanium, 36
power dissipated, 51
silicon, 36
V-I curve, 41
perfect diode, 56
zener diode, 58–65
direction of current flow, 81
doping, 36
dry-labbing, 40

e
efficiency of transformer, 337
electric current
definition, 2
generating, 2
chemically, 2
electrochemical reaction, 2
magnetically, 2
photovoltaic generation of electrons, 2
piezoelectrical, 3
thermal generation, 2
electrochemical reaction, 2
electron flow, 3
Electronics Projects For Dummies, 378
emitter bypass capacitor, 261
emitter follower, 265–271
output impedance, 265
emitter voltage, ON transistor, 109
exponential curve, 25

F
f3, signal output voltage, 218
f4, signal output voltage, 218
feedback, 304–308
    Armstrong method, 304
    Colpitts method, 304
    feedback resistor, 287
    Hartley method, 304
    negative, 294–295
    positive, 295–296
    voltage, calculating, 307
formulas, for power, 8–9
forward biased diode, 38
    closed switches and, 40
forward transfer admittance, 280
fr, attenuation, 218
frequencies
    band of, 221
    blocked by circuit, 219
    range of, 221
frequency response graphs, half
    power frequencies, 219
fuel cells, 2
full-wave rectifier, 355
function generator, 148

g
gain
    accurate amounts, 262
    op-amp, 287
generators, 2, 148
    general resonance curve, 229
    function generator, 148
germanium, diodes, 36
graph of resistance, 12–14

H
half power frequencies, 219
half power points, 219
half-wave rectifier, 352
Hartley method, 304
Hartley oscillator, 314–315
high pass filter experiment, 174–180
high Q circuit, 227
Hill, Winfield, 378
holes, 2, 36
Horowitz, Paul, 378

I
I<sub>B</sub>, 80
calculating, 112–113
value, 111
I<sub>L</sub>, 80
load current, 108
IC (integrated circuit), 284
op-amps, 285
I<sub>DSS</sub> (saturation current), 139
impedance
calculating, 169
inductor and capacitor, calculating, 215
internal impedance, 299
in phase, 331
inductor
AC circuits, 156–158
and capacitor in series, 208–218
sine waves, 191
voltage divider, 190
input resistance, 249
internal impedance, 299

J
JFET common source amplifier, 278
JFET (junction field effect transistors), 71, 97, 241
as amplifier, 275–284
amplifying AC signals, 276
biasing circuit, 275
experiment, 138–142
forward transfer admittance, 280
gate voltage, 99
N-channel, 97
operating, 99
P-channel, 97, 99
semiconductor material, 97
switches, 137
terminals, 97
transconductance and, 280
junction field effect transistors. See
JFET (junction field effect transistors)

K
KCL (Kirchhoff’s current law), 19
KVL and, 19
kilohm, 11
knee region, 44
knee voltage, 45, 46
KVL (Kirchoff’s voltage law), 16
KCL and, 19

L
LC circuit, 301
level DC, 358–373
limiting voltage, 45
line, 338
load, R<sub>L</sub>, 108
load current, calculating, 110
load line, 245
load resistance, 249
low power carbon composition
resistors, 10
low Q circuit, 228

M
magnet field, current flow and, 234
magnetically generating electric
current, 2
mechanical switches, 20
voltage drop, 40
megohm, 12
metal oxide silicon field effect transistors. See MOSFET
microampere, 11
milliampere, 11
MOSFET (metal oxide silicon field effect transistors), 71
Muir, Nancy, 378

N
N-channel JFET, 97
N type region, 36
negative feedback, 294–295
nonlinear regions, 246
notch filter, 222
NPN transistor, 75–76, 82

O
OFF transistor
characteristics, 96
resistor, 115
resistor values, 116
Ohm’s law, 4–6
ON transistor
collector voltage, 109
turning on, 108–114
op-amp (operational amplifier), 241, 284–288
gain, 287
operational amplifier, 284–288
oscillators, 233–236, 293–303
amplifier, 293
Armstrong oscillator, 316
coil, 317
Colpitts oscillator circuit, 308–313
components, 293
design, 316–320
external input, 308
feedback connections, 293
Hartley oscillator, 314–315
sine wave and, 235
troubleshooting, 320–325
out of phase, 331
output impedance, 265
output signal, peak-to-peak value, 265
output voltage
attenuated, 172
calculating, 168
determining, 229
resonant frequency and, 214
waveform
lagging, 182
leading, 182

P
P type region, 36
peak (p) voltage, 150
peak-to-peak (pp) voltage, 150
perfect diode, 39
V-I curve, 55
phase
in, 331
out of, 331
phase shift, RL circuit, 197–198
phasor diagram, 184
photovoltaic generation of electrons, 2
piezoelectrical generation of electric current, 3
PIV (peak inverse voltage), 57
PN junction, 36
direction of flow, 36
PNP transistor, 75–76, 80, 82
positive feedback, 295–296
power, 8–10
formula for, 8–9
watts and, 8
power ratings, 10
power supply circuits, 347
(peak-to-peak) voltage, 150
primary time measurement, sine waves, 151
PRV (peak reverse voltage), 57

Q
Q, 219
calculating, 224
high Q circuit, 227
low Q circuit, 228
R

R1, biasing and, 257
radio bandwidth, 222
range of frequencies, 221
Rb, 82
  calculating, 111–112, 113
  current values, 108
  turning transistor ON, 108
  voltage drop, 111
RC, 84
  turning transistor ON, 108
RC circuit, phase shift, 180–186
RE, biasing and, 257
reactance, 154
  capacitors, 166
rectification, 352
  full-wave rectifier, 355
  half-wave rectifier, 352
rectifier, 35
resistance, 154
  calculating total, 169
  graph of resistance, 12–14
resistors
  AC circuits, 152–154
  capacitors and, 186–190
  low power carbon composition, 10
  OFF transistor, 115
  in parallel, 7–8
  power ratings, 10
  in series, 6–7
  in series, 167–174
  values, OFF transistor, 116
resonance, 158–160
resonant circuits
  capacitor and inductor in series, 208–218
  half power frequencies, 219
  output curve, 218–232
  resonant frequency, net reactance of
    inductor and capacitor and, 214
  reverse biased diode, 39
  open switches and, 40
Re (feedback resistor), 287
RIN (input resistance), 249
RL circuit, phase shift, 197–198
Rl (load resistance), 249
RLC circuit, 208
  impedance, calculating, 209
  reactance, calculating, 209
rms (root mean square) voltage, 150
  root mean square (rms) voltage, 150
S
saturation, 94, 140
saturation current (Idss), 139
saturation point, 246
semiconductor, 35
series
  capacitors in, 167–174
  resistors in, 167–174
silicon
  diodes, 36
  transistor, 111
sine wave, 147
  cycle, 148, 151
  duration, 151
  inductor, 191
  as input, 167
  oscillation and, 235
  as output, 167
  p voltage, 150
  pp voltage, 150
primary time measurement, 151
producing, 148
  rms voltage, 150
  signals, primary coils, 330
  zero axis, 149
single pole double throw switch, 20
single pole single throw switch, 20
small currents, 11–12
smoothing pulsating DC, 358–373
solar cells, 2
switches, 20–22
  alternative base switching, 131–137
  closed, 20
  controlling, 136
JFET, 137
mechanical, 20
open, 20
current flow, 114
terminal voltage, 114
remote operation, 136
single pole double throw, 20
single pole single throw, 20
speed, 136
transistors as, 117–126
three-transistor switch, 127–131

**P** region thickness, 74
packages, 72
PNP, 75–76
silicon, 111
soldering to circuit, 72, 73
switching, alternative base
switching, 131–137
turning OFF, 114–117
turning ON, 108–114
used as switches, 117–126
three-transistor switch, 127–131
voltage, between collector and
emitter, 246
transistor action, 79
transistor amplifiers, 242–250
cascading, 264
emitter follower, 265–271
experiment, 251–252
gain, 249
stability, 252–256
two-stage amplifier, 264

**T**
television bandwidth, 222
*The Art of Electronics*, 378
thermal generation of electrical
current, 2
three-transistor switch, 127–131
threshold voltage, 45
time constant of circuit, 23
total capacitance, 28
transconductance, 280
transformers
alternating currents, 330
coils, 329–330
in communications circuits,
338–343
efficiency, 337
output voltage, 333
transistor, 71
base-collector diode, 75
base-emitter diode, 75
cases, 72
current gain, 85
experiment, 87–97
lead designations, 72
leads, 73
no collector current, 95
NPN, 75–76
OFF
characteristics, 96
resistor, 115
resistor values, 116

**V**
V-I curve, 41
perfect diode, 56
V<sub>ce</sub>, 89
V<sub>CE</sub>, 246
voltage
capacitors, 24, 181
cutoff, 140
knee voltage, 45, 46
KVL (Kirchhoff’s voltage law), 16
limiting voltage, 45
PIV (peak inverse voltage), 57
PRV (peak reverse voltage), 57
threshold voltage, 45
voltage divider, 14–17
capacitor in series, 168
inductors, 190
output voltage calculation,
168
resistor in series, 168
Zener effect, 58
<table>
<thead>
<tr>
<th>Index</th>
<th>V–Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage gain</td>
<td>249</td>
</tr>
<tr>
<td>voltmeter</td>
<td>41</td>
</tr>
<tr>
<td>$V_{out}$</td>
<td>170</td>
</tr>
<tr>
<td>plotting on graph</td>
<td>214</td>
</tr>
<tr>
<td>resonance frequency</td>
<td>217</td>
</tr>
<tr>
<td>$V_z$</td>
<td>219</td>
</tr>
<tr>
<td><strong>W</strong></td>
<td>watts</td>
</tr>
<tr>
<td></td>
<td>waveforms, oscillators</td>
</tr>
<tr>
<td><strong>Z</strong></td>
<td>zener diode</td>
</tr>
<tr>
<td></td>
<td>Zener effect</td>
</tr>
</tbody>
</table>